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Indicator Simulation Accounting for Multiple-Point
Statistics1

Julián M. Ortiz2 and Clayton V. Deutsch3

Geostatistical simulation aims at reproducing the variability of the real underlying phenomena. When
nonlinear features or large-range connectivity is present, the traditional variogram-based simulation
approaches do not provide good reproduction of those features. Connectivity of high and low values
is often critical for grades in a mineral deposit. Multiple-point statistics can help to characterize
these features. The use of multiple-point statistics in geostatistical simulation was proposed more than
10 years ago, on the basis of the use of training images to extract the statistics. This paper proposes
the use of multiple-point statistics extracted from actual data. A method is developed to simulate
continuous variables. The indicator kriging probabilities used in sequential indicator simulation are
modified by probabilities extracted from multiple-point configurations. The correction is done under
the assumption of conditional independence. The practical implementation of the method is illustrated
with data from a porphyry copper mine.

KEY WORDS: geostatistics, multiple-point statistics inference, sequential indicator simulation,
conditional independence.

INTRODUCTION

Geostatistical realizations permit the calculation of joint uncertainty, that is, the
uncertainty over arbitrary large volumes. For example, the probability and grades
of selective mining units above specified cutoffs can be obtained from a suite
of simulated realizations. Estimates can be obtained from multiple realizations
under any measure of goodness, not only the minimization of the mean-squared
estimation error (Deutsch, 2002; Journel, 1989).

Conventional simulation techniques account only for 2-point statistics through
a covariance (or variogram) model. The use of multiple-point statistics was pro-
posed more than 10 years ago (Deutsch, 1992; Guardiano and Srivastava, 1993);
however, all developments have been based on the use of training images for
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extracting the multiple-point statistics. These methods have limited applicability
in the mining industry.

After a brief review of the attempts at using multiple-point statistics in sim-
ulation, we propose a method to integrate the indicator kriging probability with
a multiple-point probability. This probability could be obtained from a training
image or extracted from data. We propose the use of production (blasthole) data
to infer multiple-point statistics.

ATTEMPTS AT MULTIPLE-POINT GEOSTATISTICS

Indicator algorithms allow different characterization of the continuity at dif-
ferent thresholds, which cannot be controlled by Gaussian methods
(Journel, 1983). Some novel applications of conventional simulation techniques
show improvements over typical applications, by incorporating local directions of
anisotropy (Deutsch and Lewis, 1992) or by correcting the variogram range to ac-
count for the additional connectivity not captured by the variogram (Deutsch and
Gringarten, 2000). Connectivity of extremes can also be controlled by defining a
bivariate law in a framework similar to disjunctive kriging (Emery, 2002). These
methods do not directly use multiple-point statistics into simulation. Algorithms
that only account for 2-point statistics cannot reproduce some features that are
captured by higher order statistics.

Object-based methods are used to characterize large curvilinear or con-
nected features first and then conventional 2-point statistics could be used to
simulate the petrophysical variable inside the different objects (Deutsch and
Wang, 1996; Georgsen and Omre, 1993; Haldorsen and MacDonald, 1987).
Inference of the parameters to define the orientation and shape of these ob-
jects, and conditioning the models to data, are two challenges of object-based
methods.

The direct use of multiple-point statistics in simulation has been addressed
several times. Guardiano and Srivastava introduced the generalization of the
indicator algorithm and use of the extended normal equations (Guardiano and
Srivastava, 1993; Journel, 1993). The implementation of this technique was im-
proved by Strebelle and Journel, by using a search tree to find the frequencies of the
multiple-point events in the training image (Strebelle and Journel, 2000). Deutsch
applied simulated annealing for constructing reservoir models with multiple-point
statistics (Deutsch, 1992). The difficult setting of the annealing schedule and high
computational cost of this technique make it unappealing to practitioners. Another
interesting implementation of simulated annealing was proposed by Srivastava to
simulate using change of support statistics, indirectly accounting for multiple-point
statistics (Srivastava, 1994). Another iterative technique was proposed by Caers
that is based on the use of neural networks to model the conditional distribution
function in a nonlinear fashion (Caers, 1998).
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Most previous proposals were aimed at petroleum applications. All imple-
mentations assume that multiple-point statistics are available. In petroleum ap-
plications, few local data are available, hence training images are considered for
inferring multiple-point statistics. One concern is the reproduction of features that
belong to the training image, but not to the underlying process that is being sim-
ulated. We may want to reproduce the general appearance of the training image
but not all its details. Caers proposed to split the training data into a training
set and a validation set. Then, the validation set can be used to detect when the
training of the neural network is overfitting the training set (Caers, 1998). How-
ever, the question of which features should be extracted from the training image
is difficult and unavoidably subjective. Furthermore, transferring statistics from
the training image to the realization is a problem. The univariate and bivariate
statistics of the training image may not be exactly the same as those of the study
area.

We propose a method to integrate multiple-point statistics into geostatistical
simulation. The method is general and could be applied in petroleum or mining.
We demonstrate the implementation of the proposed method with a mining case
study, where the multiple-point statistics are extracted from production data, rather
than a training image. Data come from deemed representative mined-out areas.
The more statistics we can reliably infer from the data and pass into the simulated
realizations, the better the performance of the numerical models.

STATISTICAL INFERENCE OF MULTIPLE-POINT STATISTICS

The probabilities of multiple-point events can be estimated by their relative
frequencies found in a data set. Of course, inference will only be possible if
multiple replications of an event are available to calculate its frequency. In practice
most of the samples are taken at drillholes as almost linear strings. The frequencies
of low-order statistics (3- to 5-point configurations), such as the indicator values
for strings of multiple composites in the vertical direction may be calculated. It
would be difficult to use drillhole data to infer curvilinear features. Closely spaced
blasthole data may be useful.

Stationarity must be assumed. The decision must be made to pool data to-
gether for inference. The simulated realizations may not perform well if the data
are not representative of the domain under study. Of course, the resulting simulated
models will also be unreliable if there are not enough data to infer the required
statistics.

The application of conventional kriging-based geostatistical simulation re-
quires consistent or positive-definite statistics. We propose an updating approach
that removes the need for positive definiteness of the models. Any inconsistency
will be reflected as order relations in the final conditional distributions, as it occurs
in indicator kriging-based methods.
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UPDATING THE INDICATOR KRIGING PROBABILITY
WITH MULTIPLE-POINT STATISTICS

We are interested in calculating the probability of a variable Z not to exceed
a threshold zk at location u, which we will call event A. We have a number of
events R that inform this location, noted as B1, . . . , BR , to calculate the conditional
probability of A at u. These R events may correspond to any arrangement of any
number of data at any volume support. They can be disjoint or have elements in
common. They can be considered as sets of elements, such as the samples used in
kriging to estimate the value at an unsampled location, or they can be considered
as a joint event, such as a multiple-point event, that is, a configuration of multiple
samples.

Consider the case where information from several different sources is used to
estimate the conditional probability of event A. Bayes’ law gives a formalism to
calculate this conditional probability. These different sources of information can
be integrated to estimate the posterior conditional probability of A:

P (A|B1, . . . , BR) = P (A, B1, . . . , BR)

P (B1, . . . , BR)
(1)

This expression requires the knowledge of the joint distribution of the events
B1, . . . , BR with event A, that is, P (A, B1, . . . , BR), and the joint distribution
of the events informing A, P (B1, . . . , BR). These multivariate distributions are
difficult to infer.

Recursive application of Bayes’ law permits Equation 1 to be rewritten as

P (A|B1, . . . , BR)

= P (BR|A, B1, . . . , BR−1) · P (BR−1|A, B1, . . . , BR−2) · · · P (B1|A) · P (A)

P (B1, . . . , BR)
(2)

This expression can be simplified under assumptions of conditional independence,
which will allow the calculation of the numerator. If two expressions with the same
denominator are considered, the expression in the denominator does not need to
be known, since it can be removed by taking a ratio between them.

Assumption of Conditional Independence

The assumption of conditional independence (also called permanence of ra-
tios) is a way around the problem of knowing the joint probabilities of B1, . . . , BR

and A, B1, . . . , BR (A. Journel, 1993; A. G. Journel, 2002). Conditional

Julian
Note 1:Please, change this citation to:"(Journel, 1993, 2002)"
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Figure 1. Bayesian network representing the Naive Bayes classi-
fier with attributes B1, B2, . . . , BR . The conditional independence
assumption is shown as no connectors between the attributes.

independence between the events Bi , i = 1, . . . , R, given A is assumed. This
corresponds to the same assumption of the Naive–Bayes model in statistical clas-
sification and it is usually depicted as a Bayesian network (Fig. 1) (Frank and
others, 2000; Friedman, 1997; Friedman, Geiger, and Goldszmidt, 1997; Ramoni
and Sebastiani, 2001).

This assumption basically states that the incremental information provided
by one event Bi before and after knowing the others is constant. It originates from
the assumption of conditional independence between the sources of information,
given the event A:

P (BR|A, B1, . . . , BR−1) = P (BR|A)

P (BR−1|A, B1, . . . , BR−2) = P (BR−1|A)
...

P (B2|A, B1) = P (B2|A)

The conditional probability in Equation 2 can now be written as

P (A|B1, . . . , BR) = P (BR|A) · P (BR−1|A) · · · P (B1|A) · P (A)

P (B1, . . . , BR)
(3)

We can also write the expression for the conditional probability of A not occurring
(the complement of A, which we will denote Ā). Under a similar assumption of
conditional independence, we have

P (Ā|B1, . . . , BR) = P (BR|Ā) · P (BR−1|Ā) · · · P (B1|Ā) · P (Ā)

P (B1, . . . , BR)
(4)

And taking the ratio between Equations 4 and 3, we get rid of the joint probability
of the conditioning events B1, . . . , BR:

P (Ā|B1, . . . , BR)

P (A|B1, . . . , BR)
= P (BR|Ā) · P (BR−1|Ā) · · · P (B1|Ā) · P (Ā)

P (BR|A) · P (BR−1|A) · · · P (B1|A) · P (A)
(5)
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Equation 5 can be rewritten as

P (Ā|B1, . . . , BR)

P (A|B1, . . . , BR)
=

P (Ā|BR)·P (BR )
P (Ā)

· P (Ā|BR−1)·P (BR−1)
P (Ā)

· · · P (Ā|B1)·P (B1)
P (Ā)

· P (Ā)
P (A|BR )·P (BR )

P (A) · P (A|BR−1)·P (BR−1)
P (A) · · · P (A|B1)·P (B1)

P (A) · P (A)
(6)

since,

P (Bi |A) = P (A, Bi)

P (A)
= P (A|Bi) · P (Bi)

P (A)

We can simplify Equation 6 to write the general expression for the assumption
of conditional independence to integrate information from several sources:

P (A|B1, . . . , BR) =
(

P (Ā)
P (A)

)R−1

(
P (Ā)
P (A)

)R−1
+ ∏R

i=1
P (Ā|Bi )
P (A|Bi )

(7)

This expression does not require a prior knowledge of the relationships between
the events Bi , i = 1, . . . , R, that is, all conditional relationships are built on the
basis of the assumption that the incremental information provided by the event Bi

regarding the event A is constant regardless of the other conditioning events. This
assumption greatly simplifies the calculation of the conditional probability.

METHODOLOGY

Sequential indicator simulation works by discretizing the conditional dis-
tributions by a set of probabilities calculated for some threshold values. The
probabilities assigned to each threshold are calculated by simple indicator kriging
the data and previously simulated indicator values. The estimated indicator value
is considered as an estimate of the conditional probability at that threshold, that
is, it estimates to the probability for that unsampled location to have a value less
than or equal to the threshold value. Once these probabilities have been estimated
for the set of thresholds, a simulated value is drawn by considering some inter-
polation between the thresholds and extrapolation beyond the lowest and highest
thresholds. Simple indicator kriging does not ensure that the estimated probabil-
ities for a given node will be a nondecreasing function between 0 and 1, which
is a necessary condition for a cumulative conditional distribution. Order relation
deviations are corrected to ensure that a valid cumulative distribution is built at
every location prior to simulating the value. Sequential indicator simulation allows
obtaining the conditional probability at an unsampled location (event A), given

Julian
Note 2:Please change this sentence to:"it estimates the probability..." (Remove "to")
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the set of nB1 single-point events provided by the indicator coded sample data and
previously simulated nodes. Together, these nB1 events define the event B1. Indi-
cator kriging provides the conditional probability P (A|B1), which only accounts
for 2-point statistics: the indicator-covariances between indicator-coded samples
and previously simulated nodes and between them and the location of interest.

The multiple-point set of nearby or adjacent samples is denoted B2. The
conditional probabilities of type P (A|B2) can be calibrated with multiple-point
statistics obtained from configurations of the conditioning information (indicator-
coded samples and previously simulated nodes). These multiple-point statistics
are estimated from the frequencies of a fixed set of spatial configurations, extracted
from production information from a set of mined-out benches. If informed, any
arrangement of the four adjacent nodes to the one being simulated can be consid-
ered to extract a probability of the indicator value at the location of interest, given
the indicator codes at the same threshold for the informed adjacent nodes. The
multiple-point event, formed in this case by nB−2 = 2, 3, or 4 nodes, allows the
inference of P (A|B2).

The integration of both sources of information is made under the assumption
of conditional independence, which allows the calculation of P (A|B1, B2) without
requiring the joint distribution of B1 and B2.

The general framework presented in the previous section is used to integrate
information from two sources to a data set from an operating mine. The two
sources of information are (1) exploration sample data and (2) production data.
The methodology for integrating these sources of information can be summarized
as

1. estimate the indicator values for several thresholds by simple indicator
kriging with the exploration sample data;

2. estimate the conditional probability, given a set of multiple-point config-
urations from blasthole data. These conditional probabilities are inferred
from the frequency of blasthole samples being below a threshold, given
the values of surrounding blastholes;

3. integrate the two conditional probabilities from indicator kriging and from
the multiple-point configuration by assuming conditional independence.

A GSLIB-type program to calculate the conditional probabilities, given
multiple-point information, was prepared. The integration of the two sources of in-
formation under the assumption of conditional independenced was performed with
a modified version of the program SISIM in GSLIB (Deutsch and Journel, 1998). A1

It is worth noticing that this assumption does not distinguish between the
two cases presented schematically in Figure 2. The two sources of information
are deemed independent of each other, when they are used to estimate A. Screen-
ing and redundancy of the information from several sources is not explicit when
assuming conditional independence. The consequences of assuming conditional

Julian
Note 3:Please change:"nB-2" to $n_{B_2}$The number 2 should be a subscript of B.
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Figure 2. The assumption of conditional independence of the sources of information, given
the event of interest, is highlighted in this schematic example. The assumption cannot
distinguish between Case 1 and Case 2. The redundancy between the events and possible
screening is not accounted for: data events B1 and B2 are more redundant in Case 2.

independence have not been investigated because of the difficulty in finding alter-
native models that quantify the redundancy (Ortiz, 2003).

CASE STUDY: PORPHYRY COPPER DEPOSIT

The objective of this case study is to show the implementation of the method-
ology presented and discuss some of the details of integrating information from
multiple sources. Conventional sequential indicator simulation and the proposed
method accounting for multiple-point statistics are considered.

In this application, the event A is the probability of a given uninformed node
at location u to be below the current threshold zk , for K thresholds. Two sources
of information are available. We call B1 the set of single points found within
a search neighborhood that are used to estimate the probability at u (event A),
by simple indicator kriging. They correspond to individual drillhole composites.
This means that P (A|B1) is the simple indicator kriging estimate at u. A second
source of information comes from the blasthole data set. We call B2 the event
of having any multiple-point configuration depicted in Figure 3 around u. The
conditional probability of the event A at location u is estimated on the basis of the
availability of sample data or previously simulated nodes at the four nodes adja-
cent to u. This multiple-point probability corresponds to P (A|B2). The proposed
indicator simulation method under the assumption of conditional independence
provides an estimate for the conditional probability at u based on both sources of
information:

P (A|B1, B2) =
P (Ā)
P (A)

P (Ā)
P (A) + P (Ā|B1)

P (A|B1) · P (Ā|B2)
P (A|B2)

(8)
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Figure 3. Multiple-point patterns with adjacent grid nodes. The gray node is the one being
estimated. The patterns correspond to the four adjacent nodes to the node of interest. The
probabilities are extracted from the blasthole data set even when some of the nodes are not
informed, generating the 3-, 2-, 1-, and 0-point patterns.

Data

Two data sets are available for this study. The data correspond to copper
grades from drillhole and blasthole samples for several benches of a porphyry
copper deposit.

The drillhole database has 12-m composites that correspond to the bench
height. Several rock types are available, but only one homogeneous geological
population is presented here. A plan view of the drillhole data for one bench is
presented in Figure 4. The average spacing between drillholes is around 50 m.

Blastholes for several benches are available. Blastholes are drilled at the
bench height. A view of the blasthole information for one bench is presented in
Figure 5. The samples are regularly spaced on a 10 × 10 m grid. Blastholes are
more irregular in the perimeter where damage control on the walls requires a
closer spacing. Although the blastholes appear like an exhaustive sampling, they
represent less than 1/1000th of the rock mass and provide little information on the
heterogeneity at less-than-10-m spacing.

The blasthole information from the two lower benches is kept aside for the
final comparison of performance of the methods.
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Figure 4. Plan view showing the drillhole information for a particular
bench.

Declustering is required to obtain a representative reference distribution for
simulation. A cell declustering procedure is applied to find the representative
mean. Given the spacing of the data, an anisotropic cell is used with a horizontal-
to-vertical size ratio of 4:1, since the vertical spacing of the samples is 12 m and
the drillhole spacing is approximately 50 m. A cell size of 120 × 120 × 30 m3 was
chosen. The declustering weights are used to correct the cumulative distribution
function value below each threshold. The procedure generates a distribution with
a mean of 1.068% Cu. The original value was 1.157% Cu. The standard deviation
remained unchanged at 0.548% Cu. The mean of the blasthole data used to infer
the variograms and multiple-point statistics is 1.249% Cu with a standard deviation
of 0.620% Cu.

Comparison of Data Sets

The two data sets have been validated by the mine staff and are considered
unbiased. Statistics from the drillhole and blasthole data sets were compared.
Paired samples from both databases correlate quite well. Considering a rela-
tive nugget effect of 30%, a correlation coefficient of ρ = 0.64 for pairs up to
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Figure 5. Plan view showing the blasthole information for a particular
bench.

10 m apart seems reasonably good. Trends show the same behavior in the three
principal directions for both data sets. Trends are not pronounced. Enough con-
ditioning information is available to control any local variation of the mean and
variance.

Variogram Modelling

Ten thresholds are used to obtain an adequate discretization of the conditional
distributions. The selection of these 10 values calls for several considerations: the
full distribution should be adequately sampled by these values, that is, selecting
values that are regularly spaced (in terms of probabilities) is convenient because
interpolation between thresholds is simplified; the adequate characterization of
high grades is required, hence additional thresholds are located in the high tail
of the distribution, however, variogram inference becomes more difficult as the
threshold is more extreme. The 10 threshold values correspond to the nine deciles in
the clustered distribution, and an additional threshold at the quantile 0.95. This last
value will help characterizing the high values, minimizing extrapolation problems
due to the skewness of the distribution. The proportions below the thresholds
considering the declustering weights are used within the indicator simulation.
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Table 1. Threshold Definition for Indicator Variogram Calculation and Simulation

Threshold number 1 2 3 4 5 6 7 8 9 10

Threshold value 0.58 0.73 0.84 0.95 1.08 1.22 1.36 1.56 1.91 2.18
Clustered quantile 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95
Declustered quantile 0.15 0.28 0.38 0.47 0.57 0.68 0.76 0.85 0.93 0.97

Table 1 shows the threshold values, proportions that fall below that threshold
in the clustered distribution, and the proportions corrected to account for the
clusters.

The main directions of anisotropy were found at N30◦W, N60◦E, and vertical.
This is consistent with the geology of the region and with previous studies over
this area.

Variogram modelling considers that variogram models for adjacent thresholds
must be consistent and will likely vary smoothly.

Table 2 shows the parameters for the models fitted to the experimental var-
iograms. Three structures are used to model the variogram: two spherical and
one exponential. A test of bi-Gaussianity is performed on the normally trans-
formed data. The ratio between the square root of the variogram of normal scores
and the corresponding variogram of order 1 (or madogram) should be approx-
imately constant for all distances and equal to

√
π ≈ 1.77, which is not the

case (Fig. 6). A multi-Gaussian approach would not be appropriate for this data
set.

Multiple-Point Statistics Inference

Blasthole data are used to infer multiple-point statistics. The scattered blast-
hole locations are associated with the closest point on a regular 10- by-10 m grid.
If more than one blasthole is within a cell, only the closest one to its center is
assigned to the node and all others are dropped, which implies a small loss of
information. The frequencies of multiple-point configurations for all the patterns
shown in Figure 3 are inferred. Again, the two benches used for validation are not
considered during the inference of multiple-point statistics. Inference is made by
simply counting how many times the central node of the multiple-point configu-
ration is below the threshold, given the indicator values of the four adjacent nodes
for that same threshold, if informed. This count is divided by the total number of
multiple-point events with the same configuration to approximate the frequency
of this event.

Figure 7 shows the indicator maps from the blasthole data set for one bench
considering a regular two-dimensional grid defined by the parameters in Table 3.
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Simulation must be done at the same resolution as the multiple-point
information.

Sequential Indicator Simulation

One hundred realizations obtained by sequential indicator simulation (SIS)
are generated (Deutsch and Journel, 1998). Thresholds and corrected proportions
presented in Table 1 are used. The conditioning data corresponds to the drill-
hole samples. Interpolation between thresholds is done linearly, while for the
tails, the shape of the global declustered distribution is rescaled for extrapolation,
considering a minimum copper grade of 0.0% and a maximum of 7.5%. The
grid specification is as defined in Table 3. Two benches are simulated. These
are the same ones where blasthole information is held for validation. The search
parameters are presented in Table 4.

Maps of the two benches for the first two realizations obtained by sequential
indicator simulation are presented in Figure 8.

Validation of Results

Realization is checked for data, histogram, and indicator variogram re-

A3

production. The mean and the variance of each realization is calculated and

Figure 6. Test of bi-Gaussianity for the data. The plot shows the ratio between the square
root of the variogram of normal scores over their variogram of order 1. This ratio should be
constant for all distances and equal to

√
π .
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Table 3. Grid Definition for Multiple-Point
Inference and Simulation

Number Grid
Direction of nodes spacing

Easting 50 10.0
Northing 80 10.0

plotted on histograms. The reference values are shown as black dots under-
neath the histograms (Fig. 9). This graph shows the good reproduction of the
histogram.

Order relation deviations occurred in around 52% of the points simulated
with an average magnitude of less than 1.5%. The maximum correction due to
order relation was 20%. These corrections are within the range that is commonly
seen in practice (Deutsch and Journel, 1998). Hence, they are deemed acceptable
and should not affect considerably the performance of the numerical models
generated.

Sequential Indicator Simulation Accounting for Multiple-Point Statistics

The parameters used to update the indicator kriging probabilities with
multiple-point statistics under the assumption of conditional independence are
the same as before (Table 4). Multiple-point statistics are inferred from the two
benches above the ones being simulated.

Validation of Results

The discrepancy between the mean of the drillhole data (1.068% Cu) and
the mean of blastholes used to infer the multiple-point statistics (1.249% Cu)
is corrected by using P (A) obtained from the blasthole grade distribution in
Equation 8, that is, the proportions for every threshold are calculated from the
blasthole data set. Not correcting for this discrepancy would originate models
with strongly biased global statistics. The corrected estimator is unbiased and, as
expected, this implementation results in good reproduction of the statistics. The

Table 4. Simulation Parameters

Max. data and prev. sim. nodes for kriging 24
Multiple-grid search levels 3
Maximum search radius horiz. 300 m
Maximum search radius vertical 150 m
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Figure 8. Maps of the two simulated benches for the first two realizations by SIS.

trade-off is an inflation of the variance of the realizations (Fig. 10), because of the
larger variance of the blasthole data.

Maps of the first two realizations are shown in Figure 11. Comparing these
maps with the ones obtained by SIS (Fig. 8), the higher connectivity of highs and
lows can be appreciated.

As before, the drillhole samples are assigned to the nodes in the grid. The
same procedure than in SIS is used and around 90% of the samples are repro-
duced, with the other 10% not assigned to a node because a closer sample was
available.

The impact of adding multiple-point information to the models is reflected
in the reproduction of the indicator variograms. A slightly larger range is seen in

Figure 9. Histograms of the means and variances of the realizations by SIS. The dots below the
histogram represent the corresponding reference values.
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Figure 10. Histograms of the means and variances of the realizations under the assumption of
conditional independence. The dots below the histogram represent the corresponding reference
values.

most cases, which is consistent with results obtained by other researchers (Deutsch
and Gringarten, 2000).

Order relation deviations are slightly higher than in SIS. Corrections are on
average smaller than 2.5% (compare with 1.5% for SIS), with maximums reaching
up to 40% (compare with 20% for SIS).

Comparison of Results

The average correlation of the simulated nodes with the validation data
could be considered: ρ = 0.30 for SISIM and ρ = 0.35 when multiple-point

Figure 11. Maps of the two simulated benches for the first two realizations accounting for
multiple-point statistics.
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statistics are used; a significant improvement. The quantity of metal above a
cutoff grade of 1.0% Cu can also be compared to the blastholes kept back:
5.89% less for SISIM and 2.89% less when multiple-point statistics are used;
a significant improvement. Comparisons are notoriously difficult because it is
difficult to arrive at general results. Moreover, the performance of the compet-
ing techniques can be very sensitive to many interdependent implementation
decisions.

As a final note, we must emphasize that the multiple-point statistics are not
honored by the proposed method. However, some of the higher order features
are introduced into the generated models, by locally modifying the probabilities
obtained by indicator kriging. The generated models still look like realizations
from an indicator method.

CONCLUSIONS

Incorporating multiple-point statistics in a Bayesian framework and under
the assumption of conditional independence between the sources of information
can be performed by the proposed indicator technique.

The theoretical framework has been presented for a general case, and the case
study showed the implementation details, advantages, and some of the problems
that can be encountered in practice.

Inconsistency between the different sources of information is reflected in the
final models. This problem was overcome by adjusting the “global” probabilities
in the expression to integrate two sources of information. The corrected method
gave an unbiased estimate of the conditional probability.

The problem of the resolution (grid spacing) of the multiple-point data and
final numerical model was not addressed and remains as a research area in multiple-
point geostatistics. Another problem not addressed in this article is that a random
function model strictly stationary is required to infer multiple-point statistics from
a training set. Departures from this assumption are not investigated but are likely
to happen since actual data cannot always be properly model with a stationary
random function.

The method could be applied to integrate multiple-point information from
more than one source. A straightforward application could be to use the fre-
quencies of multiple-point configurations for three or more adjacent samples in
the drillholes in addition to the two-dimensional configurations used in this case
study, extracted from blasthole data. This would integrate multiple-point infor-
mation in three dimensions to the conventional sequential indicator simulation
method.

Comparison of the performance of the models is difficult and deserves further
investigation. Historical mill data could be used to evaluate the impact of adding
multiple-point information to the models.
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Soares, A. ed., Geostatistics Tróia’92: Kluwer, Dordrecht, the Netherlands, vol. 1, p. 133–144.

Haldorsen, H., and MacDonald, C., 1987, Stochastic modeling of underground reservoir facies,
in Hanzlik, E., chair, 62nd Annual Technical Conference and Exhibition Formation Evalua-
tion and Reservoir Geology: Society of Petroleum Engineers, Dallas, TX, SPE paper # 16751,
p. 575–589.

Journel, A., 1993, Geostatistics: Roadblocks and challenges, in Soares, A., ed., Geostatistics Tróia ’92:
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