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Geostatistical simulation is being used increasingly for numerical modeling of natural phe-
nomena. The development of simulation as an alternative to kriging is the result of improved
characterization of heterogeneity and a model of joint uncertainty. The popularity of simula-
tion has increased in both mining and petroleum industries. Simulation is widely available in
commercial software. Many of these software packages, however, do not necessarily provide
the tools for careful checking of the geostatistical realizations prior to their use in decision-
making. Moreover, practitioners may not understand all that should be checked. There are
some basic checks that should be performed on all geostatistical models. This paper identifies
(1) the minimum criteria that should be met by all geostatistical simulation models, and (2)
the checks required to verify that these minimum criteria are satisfied. All realizations should
honor the input information including the geological interpretation, the data values at their
locations, the data distribution, and the correlation structure, within “acceptable” statistical
fluctuations. Moreover, the uncertainty measured by the differences between simulated real-
izations should be a reasonable measure of uncertainty. A number of different applications
are shown to illustrate the various checks. These checks should be an integral part of any
simulation modeling work flow.

KEY WORDS: Model validation, verification, simulation.

INTRODUCTION

Geostatistics has grown to a comprehensive
methodology and suite of tools for both estimation
and simulation. Conventional kriging algorithms are
looked upon favorably for their ability to estimate ac-
counting for the spatial variability of the data. The
only problem is the overly smooth distribution of es-
timates that is not representative of the true vari-
ability. Recently, simulation is gaining in popularity
to estimation techniques because of its ability to im-
prove heterogeneity characterization and assessment
of joint uncertainty.

Geostatistical simulation is built on the founda-
tions of kriging. In its development, simulation retains
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most of the positive attributes of kriging, that is, exact
data reproduction and use of the spatial correlations
between data. The smoothing effect in estimation is
corrected by accounting for the variability between
the simulated locations. Multiple realizations of the
deposit allow for the assessment of joint uncertainty.

In 1984, Parker claimed that “production of the
reserve model is now on the critical path of the
project . . . [it] has forced geostatistics to be practiced
in a ‘production mode.’ That many successful geosta-
tistical studies of the past were the result of careful
methodical research and checking is often forgotten.”
(Parker, 1984, p. 930) Almost 20 years later, this sen-
timent rings true in modern practice. The only dif-
ference is that in today’s technologically advanced
environment, this “production mode” is at a bigger
scale.

The advancement of technology and the avail-
ability of simulation algorithms in many commer-
cial software has popularized the use of geostatistics
in both the mining and the petroleum industry. The
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algorithms and engines are faster than ever before,
and they are designed to facilitate easy setup of a geo-
statistical study. The ease of application may turn geo-
statistical modeling into a “black box” practice, allow-
ing for more inferior models (Srivastava, 1996, p. 56).
Furthermore, the tools required for careful checking
of these models are rarely provided as part of the soft-
ware; the only recourse is to perform model checking
tasks outside of the commercial software, but this may
be impractical because of the large size of the files and
the data manipulation required.

This paper reinforces the need for careful checks
to ensure success in a modern geostatistical applica-
tion. Specifically, the minimum criteria for confirming
consistency in a model are addressed, and the required
checks that must be performed are outlined. An ap-
plication to a gold deposit illustrates the model results
and shows the basic tools to verify consistency of the
model with input information.

Geostatistical simulation produces a model of
uncertainty that is represented by multiple sets of
possible values distributed in space; one set of pos-
sible outcomes is referred to as a realization. Some
checks described in this paper are performed on a
single realization, whereas others are performed on
the set of multiple realizations. The term suite of real-
izations or ensemble is used to refer to this latter set of
realizations.

MINIMUM CRITERIA

The term model validation usually refers to some
measure of the goodness of a model. This goodness
may be measured by reconciling model results to some
additional hard data. In mining, this hard data can
be blast hole data; whereas in petroleum, reconcili-
ation may be more complex because only dynamic
production data are available. Whatever the addi-
tional information, model validation has a specific ref-
erence to the predictive ability of the model, suggest-
ing that the model is representative of the physical
reality (Oreskes, Shrader-Frechette, and Belitz, 1994,
p. 642).

Confirming that a model reproduces the input is
the scope of what we refer to as minimum criteria.
It does not necessarily imply that the model is geo-
logically realistic or good for production forecasting.
The key deposit-specific inputs to a geostatistical sim-
ulation consist of the actual data and the variogram
measure of spatial correlation. At the very least, the
information contained in these two inputs must be re-

produced by a numerical model. A simulated model
must reproduce:

(1) data values at their location,
(2) distribution of the attribute of interest, and
(3) the spatial continuity characterized by the

variogram model.

The latter two statistics are reproduced in expected
value, thus statistical fluctuations about these values
are anticipated. In the situation of simulation mod-
els of multiple variables, the multivariate distributions
and corresponding summary statistics should also be
honored.

Specific implementation details may cause prob-
lems. In such situations, a careful examination should
be conducted to confirm the cause of violation, and
whether this is acceptable. Some of these checks can
be performed on individual realizations while oth-
ers require consideration of the full suite of multiple
realizations.

The credibility of any model is not only depen-
dent on satisfying the above checks, but also on ensur-
ing that the model parameters are appropriate. Reli-
able inference of model parameters is critical to model
credibility and deserves some attention; however, that
is not the subject of this note.

The practitioner is faced with many decisions in
the process of model construction, use of decluster-
ing tools, variogram modeling, size of the model to
generate, number of realizations, type of kriging to ap-
ply, and a general multitude of implementation details
that differ with the software. Careful documentation
and justification of these decisions are important for
repeatability of the models. Although this documen-
tation may help to improve the construction of future
models, it does not act as an error-checking tool for
the current model under construction. For this, sev-
eral validation tools exist that should be integrated
into the modeling work flow.

As simple as this sounds, the first check should
be a visualization of the realizations (in 3D if possi-
ble). This visualization should highlight low and high
valued areas. The project geologist should be satisfied
with the variability of the high and low values and their
overall distribution. The variability or uncertainty
should be reasonable and plausible, for example, there
should be no high values in clearly low areas and vice
versa. Comparisons against simple geologic contours
of trends, generated by methods such as hand con-
touring, inverse distance and other estimation tech-
niques, also would provide a level of comfort and
confidence in the simulation models. The geologist
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should be neither intimidated by the geostatistical
procedures nor swayed into accepting any strange
results.

Once the realizations are deemed geologically
plausible, validation tools, such as cross validation and
the jackknife, could be used. The basic idea is to es-
timate an attribute at a location where the true value
is known. In cross validation, a data value is removed
and the location is estimated using all other neighbor-
ing data. Conversely, the jackknife refers to resam-
pling without replacement. As a result, cross valida-
tion is known as the “leave one out” approach, and the
jackknife approach is known as the “keep some back”
approach (Deutsch, 2002). These methods provide an
indication of the goodness of modeling parameters.
Cross validation should yield the following results for
a model with “good” parameters:

• Cross plot of the estimate vs. the true value
should show a high correlation coefficient.

• Distribution of errors should be symmetric,
with a mean of zero and a low variance.

• Cross plot of the error vs. the estimate should
be centered about zero error, satisfying a
property termed “conditional unbiasedness”
(Isaaks and Srivastava, 1989; Krige, 1999; Krige
and Assibey-Bonsu, 2000).

Although these techniques may be used to fine tune
the variogram model, cross validation results usually
are insensitive to minor changes in the variogram
model. The main use of cross validation is to identify
mistakes or problem data. It does not prove which
simulation or estimation technique is optimal.

Figure 1. Schematic illustrations of possible reasons why composite is not assigned to grid block: A, sample
is available but lies outside of simulation grid; B, sample lies within simulation grid, but is uniformed; and
C, two samples lie within same grid block, but only closest sample is assigned.

Data Reproduction

From the exactitude property of kriging, the es-
timate at a data location is exactly the data value and
the error variance is zero (Goovaerts, 1997; Journel
and Huijbregts, 1978), that is,

z∗
K(u) = z(uα), ∀u = uα , α = 1, . . . , n

where z∗
K(u) is the kriged estimate of the random vari-

able, Z, at location u in the domain, and z(uα) is the
data value at location uα , α = 1, . . . , n. Because sim-
ulation relies on the kriged estimate and the kriging
variance to define the conditional cumulative distri-
bution function (ccdf), simulation also will reproduce
the data exactly at their locations.

To verify that all data that should be reproduced
are reproduced, a crossplot of the data and the simu-
lated values at the data locations should be generated.
First, all data should be accounted for via a detailed
inventory for data reproduction. In some instances,
there is a valid reason why some data are not repro-
duced. For instance, some implementations of simula-
tion allow for data assignment to grid nodes as a way
to speed up distance calculations. As a result, the to-
tal number of assigned data may be less than the total
number of data available for conditioning. There are
a number of reasons for this (Fig. 1):

• The sample coordinates may lie outside of the
3D grid as specified by the model limits.

• The data lie inside the 3D grid, but their value is
trimmed. Although these samples are located
inside the 3D grid to be simulated, their data
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values indicate that either no sample is avail-
able or it is specified as missing or an outlier.
Hence it would not be assigned to a grid block.

• The data are inside the 3D grid but there are
multiple data close to one grid block; another
sample is closer to the same block center and
is assigned to the grid block. The first sample
then is not considered in the simulation.

The exact breakdown of samples that are not as-
signed as a result of the given reasons should be tab-
ulated to ensure that all nonreproduced data are ac-
counted for. In this type of implementation, all data
are used to define the global distribution but only the
assigned data are used to condition the simulation.

Once the exact number of data that should be
reproduced is determined, a crossplot of this subset
data against the model values at the same locations
should show a 1:1 correspondence between these two
sets of values (see Fig. 2). Slight deviations may be the
result of numerical precision of the transformation
look-up table for back transformation of simulated
values to original units, which is the situation for the
low values in Figure 2. Significant deviations from the
45◦ line should be investigated further to determine
the cause.

Of course, there is also the option to not assign
data to grid nodes. In this example, unless a sample
has the same coordinates as a grid block center, it will
not be reproduced exactly. In this implementation,
the corresponding crossplot to Figure 2 should show

Figure 2. Crossplot of original data and simulated values at data
locations.

slight deviations from the 45◦ line with a high correla-
tion near 1.0. The potential for large deviations from
this 45◦ line depends on the proportion of the nugget
effect.

Histogram Reproduction

The second check that should be performed is
to verify that the histogram is reproduced. This re-
quires that the target histogram is clearly identified.
If the representative histogram is different from the
equally weighted data histogram, then this target dis-
tribution should be clearly specified in the simulation
input parameters.

Moreover, the practitioner also should be clear
in the declustering approach employed to establish
the representativity of the distribution. In this mat-
ter, appropriate considerations regarding the differ-
ent techniques should be addressed. For instance, if a
geology model is available that clearly defines the ge-
ological boundaries, then polygonal declustering may
be preferable to cell declustering.

In the multivariate context, if the simulation ap-
proach will consider secondary data, then the target
distributions also may require accounting for both the
joint and marginal distributions of the two variables
in the weighting scheme. For instance, use of the step-
wise conditional transformation requires transform-
ing one variable conditional to another (Leuangthong
and Deutsch, 2003); hence, the target distribution
of the conditionally transformed variable will re-
quire use of the bivariate distribution to calibrate the
marginal distribution to obtain the target histogram.

To verify global reproduction of the histogram,
the histogram of the model should be examined. It
may be impractical to examine the histograms from
all realizations; however, a few randomly selected re-
alizations should be checked. In this type of visual
checking, the key features to note include reproduc-
tion of (1) the histogram shape, (2) the range of the
simulated values, and (3) the summary statistics, such
as the mean, median, and the variance (see Fig. 3).

Alternatively, a quantile–quantile (Q–Q) plot
may provide a better indication of histogram repro-
duction, as binning may hide some features in the his-
togram (see Fig. 4). This type of check permits multi-
ple realizations to be visualized at once. This amounts
to plotting multiple distributions onto the same Q–
Q plot and assessing whether the suite of distribu-
tions honors the input histogram with some statistical
fluctuations.
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Figure 3. Histogram reproduction for attribute of interest: representative histogram (left) compared to simulated histogram
from one realization (right).

Reproduction of Summary Statistics

The previous check was an examination of the
reproduction of the histogram shapes and some statis-
tics on an individual realization basis. This particular
check differs in that the reproduction of the summary
statistics will be examined over the entire suite of mul-
tiple realizations (which may be referred to as the
ensemble).

For each realization, there is a global mean and a
global variance. For the ensemble, the summary statis-
tics can be checked. An easy way to check this re-
production is to plot the histograms of the mean and
variance from all the realizations. We would expect

Figure 4. Q–Q plot of the original data distribution and simulated
values distribution to check histogram reproduction.

that for many realizations, the mean of the means
should reproduce the target mean, and the mean of
the variance distribution should reproduce the target
variance. A box plot of both distributions with a refer-
ence value will show the position of the target statis-
tic relative to the distribution of simulated statistics.
Figure 5 shows an example of this type of check per-
formed over 40 realizations. The dot plotted on the
box plot shows the target statistic relative to the dis-
tribution of the simulated statistics; this can be com-
pared with the reported mean value of the summary
statistic.

Departures from these expectations may be
cause for concern. Although this check (for the en-
semble) should be performed, usual practice is to
check only a few realizations and any departures from
the target histogram and variogram are typically at-
tributed to ergodic fluctuations (Srivastava, 1996).
There has been little work to establish acceptable er-
godic fluctuations. Deutsch and Journel (1998) dis-
cussed the effect of domain size and the variogram
model on ergodic fluctuations; Goovaerts explored
the magnitude of ergodic fluctuations and the space
of uncertainty from four different simulation algo-
rithms (Goovaerts, 1999); Srivastava touched on the
ability of simulation to fairly sample from the space
of uncertainty (Srivastava, 1996, p. 60); Chilés and
Delfiner mentioned the use of the integral range as a
measure of practical ergodicity (Chilés and Delfiner,
1999). Another way to “predict” the amount of er-
godic fluctuations one should expect is to calculate
the dispersion variance of the domain relative to
the assumption of an infinite domain, D2(A, ∞); this
can be calculated numerically. If ergodic fluctuations
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Figure 5. Reproduction of summary statistics for model variable: histogram of means (left) and variances (right) from multiple
simulated realizations. Box plots on x-axis shows 95% probability interval (outside lines), 50% probability interval (box) and
median (vertical bold line inside box). Dot indicates mean value of summary statistic from target (declustered) distributions.

exceed D2(A, ∞), then model parameters should be
checked. More work is required to explore this issue.

Variogram Reproduction

Now that the data and the histograms have
been checked for reproduction, we can proceed by
checking reproduction of the second order statistics,
specifically the variogram. For Gaussian simulation, it
is important to note that this check must be performed
in normal or transformed space (prior to back trans-
formation), since only the normal scores variogram is
imposed directly.

The variogram should be calculated for multi-
ple realizations, and compared to the input variogram
model in the same direction (Fig. 6). The model var-
iogram should be reproduced within acceptable er-
godic fluctuations (see previous discussion).

OTHER CHECKS FOR CREDIBILITY

Unlike cross validation where the true value
is known, the probabilistic models developed using
geostatistical tools are built with some degree of
uncertainty.

One basic check is to verify that the probabil-
ity intervals of the local distributions are consistent
with the underlying model of uncertainty. For a spe-
cific probability interval (PI), p, we should expect to
learn that for multiple realizations, the proportion of
times the true value falls within the PI is approxi-
mately equal to p for all p in [0,1] (Deutsch, 1996). For
instance, a symmetric PI of 80% (p = 0.80) indicates

that the lower and upper probability values in the in-
terval is 0.10 and 0.90, respectively. Ideally, the pro-
portion of times the true value falls within the 80% PI
should be close to 0.80. If this fraction is greater than
0.80, then the probability interval is too wide, and the
local uncertainty may be too high. Conversely, if the
fraction is smaller than 0.80, then the probability in-
terval is too narrow and the distribution has too low
a variance.

This can be checked for a series of PI from [0,1],
and the probability intervals plotted against the frac-
tion of true values that fall within these intervals. Fig-
ure 7 shows this crossplot for a simulation model that
was reconciled against blast hole samples. For the 70%
probability interval, the fraction of the true values

Figure 6. Reproduction of horizontal variogram: input variogram
model (outlined by a white line), and resulting variograms in mul-
tiple realizations are shown in dashed line.
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Figure 7. Crossplot of fraction of true values falling within a specific
probability interval (PI) and probability interval. Note that these
paired data fall close to 45◦ line.

Figure 8. Location map of drillhole samples (top). Histogram of gold grades (bottom left) and declustered histogram of grades
(bottom right).

falling within this interval is 63%. For this and all other
intervals shown in the plot, the match between these
pairs of numbers is sufficiently close to the ideal situ-
ation of falling on the 45◦ line.

APPLICATION

The grades in this example are from a 2D gold
deposit. There are 52 available gold drillhole sam-
ple data. Figure 8 shows the drillhole sample loca-
tions and the histogram of gold grades. Samples are
clustered in the high grade area close to the ground
surface. The gold grades (g/t) are skewed positively
with a mean and variance of 1.563 and 1.641, respec-
tively. Preferential sampling in the high-grade area re-
quires declustering to obtain the target (or reference)
distribution. This target distribution also is shown in
Figure 8, with a noticeably reduced mean and variance
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Figure 9. Normal scores variogram for gold in dip direction of 45◦ (left) and 135◦ (right).

of 1.126 and 1.479, respectively. This is the distribution
that must be reproduced in expected value by geosta-
tistical simulation.

Variography is performed using the normal score
values of the drillhole data. Concluding a directional

Figure 10. Map of simulated gold grades for realization 30 (top), target declustered gold distribution (left) and distribution of
simulated gold grades from realization 30 (right).

variogram investigation, the best correlation is shown
in the dip direction of 45◦ and is selected as the princi-
pal or major direction; the direction of minor continu-
ity is the perpendicular direction of 135◦ dip. Figure 9
shows the final experimental variogram points
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Figure 11. Crossplot of true data value and collocated simulated
value to check for data reproduction.

and the variogram model lines for both directions.
The final variogram model fitted to both directions
simultaneously is:

γ (h) = 0.35 + 0.25 · Sph (h) + 0.40 · Sph (h)

amax = 40 amax = 200

amin = 115 amin = 115

where amax is the direction of maximum continuity
with a dip of 45◦, and amin is the direction of minimum
continuity with a dip of 135◦.

Sequential Gaussian simulation is used to cre-
ate 100 realizations of gold grades at a square 2 m
support. The Northing–Elevation (Y–Z) view and
histogram of the gold grades simulated for the 30th

Figure 12. Histograms of mean (left) and variance (right) for 100 realizations to check for reproduction of summary statistics.

realization are shown in Figure 10. For easy compar-
ison, the declustered histogram is also shown. Notice
the agreement between the realization’s distribution
of simulated gold grades and the input declustered
histogram.

The check for data reproduction after simulation
is a cross plot of the original gold samples against the
collocated simulated values. This crossplot is shown
for the 30th realization in Figure 11. All of the pairs
fall on the 45◦ line. The input data are honored at the
original sample locations.

The reproduction of the summary statistics is
checked by considering all 100 realizations of the gold
distribution. The mean and variance for each realiza-
tion are summarized as a histogram of the means and
a histogram of the variances. These histograms are
shown in Figure 12. The mean of the means is 1.107
and the mean of the variances is 1.449 compared to the
input declustered distribution’s mean and variance of
1.126 and 1.479, respectively. The input distribution is
satisfactorily reproduced.

To check that the variogram model is reproduced
satisfactorily, the variogram is calculated in both the
major and minor direction for each of the 100 real-
izations. All 100 calculated variograms are shown as
dashed lines, and the input model variogram is shown
as a solid line in Figure 13. The variogram model is
satisfactorily reproduced in both directions.

DISCUSSION

Although this paper is focused mainly on the
minimum acceptance criteria, there are a number of
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Figure 13. Variogram in direction of major (left) and minor (right) continuity directions. Input model is shown as dark solid
line, whereas variograms corresponding to 100 realizations are shown as lighter dashed lines.

considerations that should be addressed prior to using
these models for decision making.

The four basic criteria identified as the minimum
criteria in this paper are not new. Geostatisticians
have known about these checks, but the general prac-
tice of model checking is lacking.

Any model of spatial uncertainty should include
a prior assessment of data uncertainty and possible
errors. This involves a clear and complete documen-
tation of the errors and uncertainty inherent in the
data. In light of this assessment, the practitioner then
can gauge when the data or statistics are honored too
well. Essentially, this practice is aimed at document-
ing data that must be honored and recognizing the
level of reproduction that would be acceptable.

Once the models are constructed, one idea is to
methodically check each realization and “sign off” on
it, after verifying that the realization honors all the
input information and conforms to the geological in-
terpretation. The set of signed-off realizations then
can be passed through to the next stage of decision
making.

Another consideration is to reconcile the model
results with existing “output” or production data. For
instance, in a petroleum context, the flow response of
the reservoir is of primary importance. A set of re-
alizations could be processed through a flow simula-
tor and the model response could be checked against
real production data. Similarly in a mining context, the
simulated values could be reconciled against blasthole
data or actual mill production to assess the predictive
ability of the model. The historical performance of

simulation models for other similar sites also can be
used as a measure for comparison.

CONCLUSIONS

Today, much emphasis is placed on the construc-
tion of numerical models for risk qualified decision-
making. Many different stochastic simulation algo-
rithms exist to build these models, and the application
of conventional approaches is made popular through
commercial software. Faster, more efficient comput-
ers facilitate this modeling process. Model checking is
as important to the decision making process as the ac-
tual model construction, but unfortunately, this area
may be overlooked in practice.

For geostatistical realizations, there are essen-
tially four minimum criteria that must be satisfied.
These are reproduction of (1) data values at data loca-
tions, (2) the target histogram, (3) the target summary
statistics, and (4) the input covariance model. In the
multivariate context, this list should also include re-
production of the multivariate distribution and the
corresponding summary statistics. An application to
a 2D gold deposit shows the relevant checks required
to ensure the realizations are consistent with the sim-
ulation approach.
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