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ABSTRACT 

Kriging-based geostatistical models require a semivariogram model.  Next to the initial decision of 

stationarity, the choice of an appropriate variogram model is the most important decision in a 

geostatistical study.  Common practice consists of fitting experimental semivariograms with a 

nested combination of proven models such as the spherical, exponential, and Gaussian models.  

These models work well in most cases; however, there are some shapes found in practice that 

are difficult to fit.  We introduce a family of semivariogram models that are based on geometric 

shapes, analogous to the spherical semivariogram, that are known to be conditional negative 

definite and that provide additional flexibility to fit semivariograms encountered in practice.  A 

methodology to calculate the associated geometric shapes to match semivariograms defined in 

any number of directions is presented.  Greater flexibility is available through the application of 

these geometric semivariogram models. 
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INTRODUCTION 

Kriging-based geostatistics is routinely used for estimation and simulation of continuous 

and categorical geologic properties.  The random function paradigm of geostatistics involves 

three main steps: (1) definition of the variable and the stationary domain for the variable {Z(u), u 

∈ A}, which involves the definition of rock types/facies and large scale trends, (2) establish a 

semivariogram model for the variable, γ(h), that is valid for all distances and directions found in 

the domain A, and (3) make inferences with kriging and Monte Carlo simulation.  The 

reasonableness of the inferences depends on the first two steps (Pyrcz and others, in press).  

The expert site-specific decision of a stationary domain is arguably the most important; however, 
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the calculation and fitting of a semivariogram model is also very important.  The inference step is 

largely automatic once the first two steps are taken.  This paper is aimed at the second step of 

establishing a valid semivariogram model.  The conventional method of modeling semivariograms 

by nested structures is reviewed.  A suite of geometric semivariograms and a method for 

constructing new geometries that match custom continuity styles are presented.  These 

geometric semivariogram models allow for greater flexibility in the generation of permissible 

semivariogram models. 

 

CONVENTIONAL SEMIVARIOGRAM MODELING 

The semivariogram characterizes spatial variability of the variable under consideration.  

Semivariogram models must be conditional negative definite; the covariance counterpart must be 

positive definite.  This mathematical property ensures that the semivariogram is an licit measure 

of distance and that all resulting variances will be non-negative for all possible configurations of 

conditioning data (Journel and Huijbregts, 1978, p. 35). 

Experimental semivariogram points are calculated in the principal directions allowing for 

some distance and direction tolerance to find sufficient pairs.  The experimental points are fitted 

with a sum of nested structures:   
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where nst is the number of nested structures, 0=i  is commonly reserved for the nugget effect.  

The Ci values are the variance contribution of each nested structure; they must be non-negative.  

The )(hiΓ  functions are valid semivariogram functions defined by a shape (e.g., spherical, 

exponential, Gaussian), rotation angles to allow the vector h  to be represented in the principal 

directions of continuity (h1, h2, h3), and range parameters (a1, a2, a3) to account for anisotropy.  

Standardized distances are calculated with the following equation: 
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The standardized distance h is at the range of correlation in all directions.  The standardized 

shape converts the scalar h to a standardized variogram value Γ(h). 

Semivariogram modeling has relied on fitting known conditional negative definite 

functions such as spherical, exponential and Gaussian models.  Linear combinations of 

semivariogram models and products of covariance models are also valid functions (Deutsch and 

Journel, 1998, p. 24).  While this provides a workable mechanism for modeling most 

semivariograms, there are some cases that are not well fit with this framework.   

Figure 1 shows an example structure commonly observed in experimental 

semivariograms that is not easy to fit with the conventional structures. 

The application of more flexible semivariogram modeling is inhibited by the difficulty in 

ensuring conditional negative definiteness.  There is a largely unexplored suite of conditional 

negative definite models known as geometric semivariograms that provides additional flexibility.  

They are genetically guaranteed to be conditional negative definite and therefore avoid the 

burden of proof required by arbitrary semivariogram functions. 

The covariance is related to the semivariogram under second order stationarity: 

)()( 2 hh γσ −=C                                                            (3) 

where )(hC  is the covariance and 2σ is the variance.  For ease of interpretation, semivariogram 

tables are shown as covariance tables since this is the common convention in kriging-based 

geostatistics, as covariance values provide improved stability in the solution of kriging matrices 

(Deutsch and Journel, 1998). 
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GEOMETRIC SEMIVARIOGRAMS 

Semivariogram models based on a moving average of a generalized Poisson process is 

conditional negative definite (Matérn, 1960, p. 28).  Geometric semivariograms result from the 

special case of spatial convolution where the weighting function is reduced to a Dirac function of 

the form: 
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This amounts to the volume of intersection )(hvK of any geometric object, V, with itself offset by 

a lag vector, h scaled by the volume of the geometric object, )0(vK .  Construction of a 

geometric semivariogram is illustrated in  

 

 

Figure 2. 

A conditional negative definite model in n-D is valid in any less or equal dimensional 

space; for example, the spherical semivariogram, based on a 3-D geometry, is valid in 3, 2 and 1 

dimensions, a circular semivariogram, based on a 2-D geometry, is valid in 2 and 1 dimensions 

and the triangular semivariogram, based on a 1-D geometry, is valid only in 1 dimension.  

In some cases analytical equations may be available for the volumes of intersection. 

Numerical integration can always be used for complicated geometric objects. The volume of 

intersection is calculated as: 
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where ),,( zyxi uuu  and ),,( zzyyxxi huhuhu +++  are indicators set to 1 within the object and 

0 if outside the object and )0(VK ′  is the discretized volume of the geometry and )(hVK ′ is the 

volume of intersection given the component lag vectors zyx hhh ,,  of lag vector h .  The result is 

a discrete covariance model for kriging or simulation.  This discrete covariance model may be 

represented as a covariance table that may be loaded directly into kriging or a kriging based 

simulation algorithm. 

 

Limitations of Geometric Semivariogram Models 

 Geometric semivariogram models have a some limitations in their form. (1) it is not 

possible to model a semivariogram above the sill variance (see Equation 5).  This precludes the 

modeling of trend and hole effect continuity structures.  (2) The semivariogram is linear at small 

lag distance.  The linear feature at small lag distances prevents geometric semivariogram models 

from reproducing high short range continuity as seen with the Gaussian semivariogram model 

(Deutsch and Journel, 1998).  (3) The semivariogram model is only known at discrete lag 

distances, unless the analytical solution is known (i.e. spherical semivariogram model).  The 

geometry and semivariogram table are constructed to match a specific regular grid; therefore, the 

semivariogram may only be applied to calculate the covariance between points on this grid.  

These models are suitable for simulation of values on a detailed regular grid, which is 

increasingly common in geostatistical calculations.  The data are assigned to the nearest grid 

node. 

 

Some Isotropic Geometric Semivariogram Models 

Isotropic geometric semivariogram models result from isotropic geometric objects.  This 

is limited to combinations of lines (1-D), circles (2-D), spheres (3-D) and hyperspheres (n-D, n > 

3).  These geometric models account for anisotropy by scaling the component vectors [Eq. (2)].  
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The spherical  semivariogram model is used frequently.  The spherical model is based on 

the standardized volume of intersection of two spheres separated by a lag vector (h) as defined 

(Serra, 1967).  

totalvolume
volume int)(1)( hh −=γ                      (6) 

where int)(hvolume  is the volume of intersection totalvolume  is the total volume of the geometric 

object. 

A variety of other isotropic geometric semivariogram models may be calculated by 

hollowing of the geometric object.  For example the circle in 2-D may be changed to an annular 

region or the sphere in 3-D may be changed to a hollowed sphere.  The hollowed sphere results 

in a novel series of conditional negative definite 3-D semivariogram models parameterized by the 

inner radius (r1) or fraction of hollowing.  A series of hollowed spherical semivariogram models 

are shown in  

Figure 3. 

In the limiting cases this semivariogram is equivalent to the spherical model when r1 

equals 0.0 (the sphere is not hollowed) and approaches the nugget effect as r1  r2.  The 

difference between the hollowed spherical semivariogram and the spherical semivariogram is 

equivalent to the volume of intersection lost due to the hollowed inner sphere (Figure 4).  An 

example hollowed sphere (fraction hollowed 0.75) geometry and resulting covariance table are 

shown in  



 8 

 

 

Figure 5. 

 

Anisotropic Geometric Semivariogram Models 

Any geometric shape in any dimension leads to a valid semivariogram model.  Slices 

through an approximated shape of a point bar inclined heterolithic strata (IHS) are shown on the 

top of  

 

 

Figure 6.  The covariance table is calculated for this object and is shown on the bottom 

of  

 

 

Figure 6.  This geometric object has resulted in a complicated anisotropic covariance 

table. 

There are a variety of geologic geometries that may be applied to calculate 

semivariogram models.  For example, characteristic geometries of architectural elements from 

fluvial depositional settings such as lateral accretion, downstream accretion, and channel fills 

(Miall, 1999, p. 93) may be suitable. 

A semivariogram model constructed by an elementary geologic shape does not 

necessarily mean that the resulting kriged or simulated models will reproduce those shapes.  In 

fact, the underlying indicator semivariogram model for spheres (of proportion p=1-p0) embedded 

randomly within a matrix is related the spherical variogram, but is not the spherical variogram: 

( )( )
0 0( ) 1 Sphp pγ = − hh                                                        (7) 
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Equation 7 could be generalized to account for any geometric variogram in the exponent.  

Another approach would be to directly calculate the geometry that will match an experimental 

semivariogram model. 

 

SCULPTED GEOMETRIC SEMIVARIOGRAMS 

A method is presented to calculate the geometry to match a target semivariogram in 

specified directions.  An initial geometry is iteratively eroded and dilated.  Changes that improve 

the match between the current geometric model and the target semivariograms are accepted.  

The resulting geometry may be applied to calculate covariance tables for kriging and simulation. 

 

The Inputs 

Custom geometric semivariograms may be constructed to match continuity structures 

defined in any set of directions.  These continuity structures are represented as tables with the 

target semivariograms and associated lag distance.  The practitioner will apply site specific 

information and professional judgment in assigning these target directional semivariograms.  It is 

anticipated that these models will be fit to at least the principal directions, with additional 

directions added to further constrain the resulting model. 

 

The Initial Geometry 

 Initial geometry is coded such that the final model may not have a range greater than the 

longest identified range nor less than the shortest identified range.  The geometry is initialized 

with an outer ellipsoid of diameter equal to the largest range in all specified directions and an 

inner ellipsoid of diameter equal to the shortest range.  No location outside the outer ellipsoid is 

allowed to be part of the geometry.  Locations inside the inner ellipsoid are not to be taken away 

from the geometry.  The remainder of the space may be switched between 1 and 0 iteratively to 

improve the reproduction of the target directional semivariograms ( 
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Figure 7).   There is no analytical model of anisotropy used for off-diagonal directions, unlike the 

assumption of an ellipsoidal continuity in the off-diagonal directions in traditional semivariogram 

models ( 

 

 

Figure 8).  Multiple sculpted geometric semivariogram models may be calculated to represent 

this uncertainty in the off-diagonal directions.  If adequate information is available, experimental 

semivariogram fits in off-diagonal directions may be integrated to further constrain the model. 

 Zonal anisotropy may be included by setting the initial diameter large relative to the size 

of the covariance lookup table.   

 

The Iterations and Convergence Criteria 

An objective function is applied to characterize mismatch between the target and 

sculpted geometric semivariogram models.  This objective function is shown below: 

∑∑
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nDir
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where )( , ji
geo hγ and )( , ji

t hγ are the current geometric and target semivariogram models for 

each indicated direction, i, and lag, j.  This objective function weights all lag distances equally.  It 

is common practice to focus on fitting short scale structures, the addition of a weight (such 

as ji,/1 h ) would account for this.  

The nodes within the modifiable zone ( 

 

 

Figure 7) are visited in order from the outside inwards.  This ordering is based on the 

distance function of initial geometry (Vincent, 1993).  This amounts to the assignment of the 

distance to the nearest periphery of the geometry at all nodes within the geometry.  The distance 

function is sorted in ascending order with pointer arrays permuted. 
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For each location, the geometry code is switched.  The location within the current 

geometry is eroded ( i (ui) = 1  0) or outside the current geometry dilated ( i (ui) = 0  1).  The 

objective function is updated and if the perturbation reduces the objective function it is accepted.  

The algorithms proceeds until either a maximum number of iterations are performed or until a 

specified number of iterations occur without acceptance of a perturbation.   

 

 

 

Example Sculpted Semivariogram Models 

 A large suite of sculpted semivariogram models were calculated.  Many unconditional 2-D 

simulation models were calculated with a variety of input semivariogram parameters (ranges, 

nugget effects, anisotropies and structure types).  Then the experimental semivariograms were 

calculated for the 00, 450, 900 and 1350 azimuths.  These experimental semivariograms were 

applied as input for the construction of 2-D sculpted geometric semivariograms.   The resulting 

covariance tables were checked for ill conditioned covariance matrices; all variances were 

positive (as required by theory) and all kriging weights were reasonable [-1,1]. 

An example 2-D sculpted geometric semivariogram model is shown in  

Figure 9.  This example demonstrates the flexibility and some limitations of sculpted 

semivariogram models.  Note that the trend in the input directional variograms is not reproduced 

since geometric models may not exceed the sill.  The zonal anisotropy is not reproduced since 

the largest range was set to 40 units. 

Another example 2-D sculpted geometric semivariogram model is shown in  

 

Figure 10.  This model represents a phenomenon with a high nugget effect and a high 

degree of anisotropy.  Note that the nugget effect is reproduced by a lack of contiguity in the 

geometry and the anisotropy results in anisotropy in the geometry.  Another method for 

incorporating the nugget effect is to model other continuity structures and then add the nugget 

effect to this discrete model.  
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SEMIVARIOGRAM MODELING PROCEDURE 

The flexible semivariogram modeling is summarized.  This methodology requires the 

following steps: (1) assess the continuity of the modeled phenomenon in at least the principal 

directions, (2) construct a geometric object either from characteristic geometries or by the 

iterative method introduced in this paper with a resolution greater than or equivalent to the 

resolution of the model to be estimated or simulated, (3) calculate a discrete covariance table 

from this geometry, (4) load this covariance table into the kriging or simulation algorithm.  These 

directional models may be regression fits of the experimental semivariogram points, or even hand 

drawn.   The key is to build models that integrate the available geologic information.   

 

 

CONCLUSIONS 

The choice of semivariogram model has a major affect on kriging and kriging-based 

simulation.  These models are commonly modeled as nested combinations of proven models.  

Geometric semivariogram models provide a suite of conditional negative definite models for 

improved semivariogram modeling flexibility.  A flexible method has been presented for 

constructing geometries for geometric semivariograms that reproduce spatial continuity identified 

in principal and additional directions.  

The required computer code is straightforward and efficient and is available from the 

authors.  All semivariogram models proposed here are guaranteed to be conditional negative 

definite; therefore, there are no issues with implementation.  Flexible fitting of semivariogram 

models allows for greater focus on the available experimental semivariogram and geologic 

information without the limitation imposed with the traditional method of nested structures. 
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Figure 1 - An example semivariogram that is not well fit by nested sets of traditional variogram 

models. 

Figure 2 – An example geometric object and the resulting geometric variogram in the horizontal 

direction.  The semivariogram model is anisotropic. 

Figure 3 - A series of hollowed sphere semivariogram models.  The sphere radius, r2, is set to 

1.0 and the radius of the hollowing is varied. 

Figure 4 - Volumes v1, v2 and v3 (A, B and C): a traditional spherical variogram model is equal 

to standardized v1 subtracted from the contribution.  The hollowed sphere model is equal to the 

spherical minus v2 plus v3. 

Figure 5 - Center slices through the rasterized geometric object and the resulting covariance 

table for the hollow spherical model with a hollowed fraction of 0.75. 

Figure 6 - Center slices through the raster geometric object and the resulting covariance table for 

a possible IHS point bar variogram. 

Figure 7 – An initial 2-D geometry based on fit semivariograms in three directions.  The area 

outside a circular geometry with a diameter equal to the longest identified range (direction A) is 

set as permanently outside the geometry.   A circular geometry with a diameter equal to the 

shortest identified range (direction C) is set as permanently inside the geometry.  The remainder 

may be modified iteratively to fit the semivariograms in each identified direction.   

Figure 8 – The constraints on sculpted geometric semivariogram models.  The major and minor 

principal directions (directions A and B respectively) and the traditional anisotropy ellipsoid are 

shown.  The sculpted semivariogram model is constrained such that range in the off diagonal 

directions (such as direction B) may not exceed the range in the major direction or be exceeded 

by the range in the minor direction.  The anisotropy may be expressed in a various forms within 

this constraint.  

Figure 9 – A 2-D geometry and covariance table for a sculpted geometric semivariogram model 

based on a phenomenon with high continuity.  The initial geometry, the target directional models 

and resulting sculpted geometric semivariogram models in 0O, 45O, 90O and 135O directions are 
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shown.  The longest range of continuity was assigned as 40 units.  The target models are 

experimental semivariograms from unconditional sequential Gaussian simulation. 

Figure 10 – A 2-D geometry and covariance table for a sculpted geometric semivariogram model 

based on a phenomenon with high anisotropy and large nugget effect.  The initial geometry, the 

target directional models and resulting sculpted geometric semivariogram models in 0O, 45O, 90O 

and 135O directions are shown.  The target models are experimental semivariograms from 

unconditional sequential Gaussian simulation. 
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