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INTRODUCTION

Red Dog mine is located in the DeLong Moun-
tains of the Brooks Range, approximately 90 miles
north of Kotzebue, Alaska, United States. The prop-
erty is owned by the Northwest Alaska Native Associ-
ation (NANA) Regional Corporation and the mine is
operated by Teck Cominco Limited. There are five
known deposits in the Red Dog district. Four (Main,
Aqqaluk, Paalaaq, and Qanaiyaq) occur in the imme-
diate vicinity of the original discovery, while Anarraaq
is approximately 11 km to the north. The deposit con-
sists of sulphide ore zones in sedimentary exhalative
(sedex) deposits and is characterized by the presence
of multiple metals and multiple ore types. The mine
assays for as many as ten variables, the four primary
ones being Zn, Pb, Fe, and Ba.

A key issue is the variability within the deposit
and the effect this variability has on Zn recovery.
Recovery is adversely affected by the presence of high
barite and other deleterious minerals and ore tex-
tures. The existing long-term resource model was
constructed by independently kriging the four main
variables. The objective of this study was to apply a
geostatistical modelling approach using a multivariate
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transformation method called the stepwise condi-
tional transformation to jointly model the key ele-
ments. Improved multivariate modelling of the
different elements and ore types should improve the
reliability of the long-term resource model and, there-
fore, the prediction of Zn recovery.

There are various geostatistical approaches that
could be adapted to multivariate data (Journel and
Huijbregts, 1978; Wackernagel, 1995; Goovaerts,
1997; Chilès and Delfiner, 1999). Gaussian simulation
is common, and the integration of multiple data types
could be accommodated by full cosimulation or a
simplified collocated cosimulation (Xu et al., 1992).
The complex relationships encountered in real data,
however, violate the implicit multi-Gaussian assump-
tions in these approaches and alternative approaches
may be required. Direct cosimulation (Soares, 2001)
and indicator cosimulation under a Markov-Bayes
assumption (Zhu and Journel, 1993) are alternatives
to Gaussian-based approaches. Another popular
alternative is to consider data transformation for mul-
tiple variables such as alternating conditional expec-
tation (ACE; Brieman and Friedman, 1985), principal
components analysis (PCA; Goovaerts, 1993), mini-
mum/maximum autocorrelation factors (MAF; Switzer
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and Green, 1984; Desbarats and Dimitrakopoulos,
2000), and the stepwise conditional transformation
( S C T; Leuangthong, 2003; Leuangthong and
Deutsch, 2003).

Despite facilitating the integration and account-
ing of multivariate data, each transform a t i o n
approach serves different goals. The aim of ACE is to
maximize the linear correlation of the resulting trans-

formed factors, after which conventional
Gaussian cosimulation can proceed. PCA
aims to decorrelate the data by maximiz-
ing the variance of the transformed vari-
ables; this may also aid to reduce the
dimension of the problem. MAF is an
extension of PCA, but applied twice to
decorrelate the data at two different lag
distances; this yields variables that tend
to be spatially uncorrelated. SCT pro-
duces Gaussian variables that are uncor-
related; this combination yields
transformed variables that are independ-
ent at lag h=0. All but the latter
approach require a second transforma-
tion to Gaussianity. With the exception of
ACE, all other approaches aim to decor-
relate information with the potential
benefit of simplifying the problem and
the modelling methodology. This paper
illustrates the application of the latter
transformation approach for simulation
of Red Dog’s Main pit.

The following sections provide an
overview of the geological setting, scope
of study, the available data, the simula-
tion approach, and relevant decisions
made in the modelling process. This is
followed by a small synthetic classifica-
tion/profit exercise to assess the impact
of the proposed methodology and the
common independent kriging approach.

OVERVIEW OF GEOLOGY AND
AVAILABLE DATA

The Red Dog deposits are sedex,
zinc-lead-silver deposits hosted in Missis-
sippian- to Pennsylvanian-age black
shale. The deposits are found in the De
Long Mountains, which are made up of
eight stacked and folded allochthons.
The six structurally lowest allochthons are
composed of Devonian through to Creta-
ceous clastic and chemical sedimentary
rocks, while the two upper allochthons
are of Jurassic and older age and are
made of mafic to ultramafic igneous
sequences (Moore et al., 1986).

The Red Dog deposits are found in
the second lowest allochthon hosted by
black siliceous shale and chert of the
Ikalukrok unit of the Kuna Formation.
The stratigraphic footwall to the mineral-
ization is an interbedded, light gray, cal-
carenite and dark gray calcareous shale,
the Kivalina unit. The deposits them-
selves are a strata-bound accumulation
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Fig. 1. Stratigraphic section of the Red Dog sequence (left) and bedrock geology for the Main and Qanaiyaq (Hilltop)
deposits (right). Source: Moore et al., 1986.

Fig. 2. Idealized section of the Red Dog deposit showing three of the four zones (top) and an idealized section of the
Main deposit (bottom).
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of siliceous rock, barite, and sulphides. The hanging-
wall unit to the mineralization is a silica- and sulphide-
poor barite of the lower Siksikpuk Formation of
Pennsylvanian to Permian age (Moore et al., 1986). A
stratigraphic section and geologic map can be seen in
Figure 1.

The Main deposit, as known from drilling and pit
mapping, is a nearly flat, elongate stack of mineral-
ized lenses. It extends 1,600 m in a northwest direc-
tion, varies in width from 150 m to 975 m, and is up
to 135 m thick. The erosion contact of the structural
footwall tectonic mélange zone and underlying
O k p i k ruak formation of the Wolverine Cre e k
allochthon forms the western and southwestern edge
of the deposit. To the north and northeast, the Main
merges with the Aqqaluk deposit. Main and Aqqaluk
are actually one deposit separated for reserve pur-
poses along a boundary defined by the Red Dog and
Shelly Creek diversions.

The Main deposit consists of two major and one
minor mineralized plates and their associated overly-
ing waste rocks. The upper plate is a flat-lying sheet
of Kivalina unit limestone and shale, Ikalukrok unit
siliceous shale, and sulphide-bearing barite rock. The
median plate contains most of the reserves in the
Main zone and consists of a sequence of massive to
semi-massive sulphide rock, sulphide-bearing silica
rock, and sulphide-bearing barite rock. The mineral-
ized portion of the median plate is capped with a
sequence of shale and chert of Siksikpuk, Otuk, and
Okpikruak units. The lower plate mineralization in the
Main deposit consists of sulphide-veined, silicified,
Ikalukrok shale, semi-massive to massive sulphides,
and sulphide-bearing barite rock. An idealized south
to north section through the Main deposit is shown in
Figure 2. 

The scope of this case study is limited to eight
geological rock types corresponding to four different
ore type units in the Upper and Median plates. These
were chosen because they correspond to a volume
that includes both recently mined material and mate-
rial that will be mined in the near future.

The existing grade models were independently
kriged at a 7.6 m by 7.6 m by 7.6 m (25 ft by 25 ft by
25 ft) resolution. The geostatistical models will be
simulated at 3.8 m by 3.8 m by 3.8 m (12.5 ft by 12.5
ft by 12.5 ft) resolution, and later upscaled to 7.6 m
(25 ft) cubed for comparison purposes. There are
some good reasons to model at a finer scale than is
required. Firstly, the 3.8 m (12.5 ft) composite data
are a good compromise between retaining some of
the variability of the smaller drillhole sample data and
the faster simulation of larger and, hence, fewer cells.
Secondly, the simulation is essentially a “point”-scale
simulation; current implementations of Gaussian sim-
ulation do not explicitly account for volume-variance
relations. Thus, simulating at a finer resolution and
then averaging to larger blocks shows the variability
of the block grades more accurately.

Six benches will be modelled, spanning a volume
that is 1370 m (4,500 ft) wide (easting) by 1370 m
(4,500 ft) long (northing) by 46 m (150 ft) vertical

span (elevation). The model will consist of a total of
1,555,200 grid points. The simulations will be con-
structed on a by rock type basis and all figures shown
will correspond to one particular rock type. Once all
rock types are simulated, the realizations will be
merged. All global comparisons consist of all rock
types taken together.

Three types of data were available: drillhole data,
composited drillhole data, and blasthole data. Multi-
variate geostatistical modelling considered the 3.8 m
(12.5 ft) composites. A geology model at 7.6 m (25 ft)
resolution was also available. For consistency with the
simulation models, the 7.6 m (25 ft) geology block
model was reformatted into a 3.8 m (12.5 ft) block
model.

There were a total of 9,847 3.8 m (12.5 ft) com-
posites available for the eight rock types of interest.
The term drillhole (DH) refers to the 3.8 m (12.5 ft)
composites. DH data are at a nominal 30 m by 30 m
(100 ft by 100 ft) spacing. For these same rock types,
there were 58,566 blasthole (BH) data available for
model validation. BH data are more closely spaced
than DH data at 3 m by 3.7 m (10 ft by 12 ft) spacing
with 7.6 m (25 ft) vertical extent (the vertical span is
one bench). F i g u re 3 shows the projection of the avail-
able DH data onto the horizontal and vertical plane.

MULTIVARIATE SIMULATION APPROACH

Conditional simulations were perf o rmed for
seven variables: Zn, Pb, Fe, Ba, sPb (soluble Pb), Ag,
and TOC (total organic content). These seven vari-
ables were modelled for each rock type, using Gauss-
ian simulation with stepwise conditionally
transformed (Leuangthong, 2003) variables. The main
steps of the simulation are:
1. Data declustering to obtain representative distribu-

tions for each variable.
2. Tr a n s f o rming data in a stepwise conditional

(Rosenblatt, 1952; Luster, 1985; Leuangthong and
Deutsch, 2003) manner to obtain independent
Gaussian variables.

3. Calculating and modelling the directional vari-
ograms for each of the transformed variables
within each rock type.

4. Independently simulating transformed variables via
sequential Gaussian simulation (Isaaks, 1990).

5. Back transforming simulated values in a stepwise
conditional manner to re t u rn values to original units.

6. Validating simulation results to confirm data, his-
togram, crossplot, and variogram reproduction.

Once all variables within all rock types were mod-
elled, the block models were merged to form multiple
realizations of the study area for uncertainty assess-
ment and post-processing. All simulation-re l a t e d
tasks were performed using GSLIB (Deutsch and Jour-
nel, 1998) and other GSLIB-compatible tools.

The proposed methodology is a fairly common
approach to geostatistical Gaussian simulation; the
main difference is the use of the stepwise conditional
transformation (SCT) in place of the conventional nor-
mal score transform. SCT is a multivariate Gaussian
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transformation approach whereby the primary vari-
able is transformed to be standard normal, and all
subsequent variables are successively conditioned to
the previous variable(s) based on probability binning
(Rosenblatt, 1952; Luster, 1985; Leuangthong, 2003).
A simple numerical example of how the transform is
actually performed is illustrated in Figure 4.

The transform applies to collocated multivariate
data and facilitates multivariate modelling by remov-
ing complex dependencies between the variables,
making them independent, prior to simulation. Cross
variograms between transformed variables should be
checked to verify that spatial correlations are approx-
imately zero. After such verification, independent
Gaussian simulation can proceed. Back transforma-
tion restores the complex relationships between the
multivariate data.

The need to consider seven variables simultane-
ously for any one rock type poses a problem in prac-
tice; this is the case for Red Dog. The multivariate
stepwise conditional transform would require 107

composites in order to have a minimum of ten data
per probability class. This is impractical. A nested
application of the stepwise conditional transforma-
tion is proposed to overcome this problem. Account-
ing for a lower-dimensional multivariate distribution
was considered. Inference of a trivariate distribution
would require approximately 103 or 1,000 data to
define the conditional distributions with a minimum
of ten data. This is more reasonable, given the num-
ber of composites available.

The transformation ordering for the stepwise
conditional transform will affect the reproduction of
the variogram from simulation. Thus, the most impor-
tant variable or the most continuous variable should
be chosen as the primary variable (Leuangthong and
Deutsch, 2003). For Red Dog, Zn is the most impor-
tant variable, and so all others will be conditioned to
it. To account for the other six variables, sets of trans-
formations were proposed (Table 1).

The transform a t i on order re flects the signific a n c e
Teck Cominco staff attribute to each variable. Zn was
c o n s i d e red to be the most important, and so all other
variables were trans-
f o rmed conditional to
Zn. In all cases, Fe or
Pb act as secondary
variables, and all
remaining variables
w e re then trans-
f o rmed conditional to
either Zn and Pb or Zn
and Fe. The choice of
the secondary variable
in each transform
o rder re flects the re l a-
tionship between the
s e c o n d a ry and tert i a ry
variable; however, this
cannot be measure d
by the corre l a t i o n
c o e fficient alone as

the correlation summarizes only the linearity of this
relationship. Non-linearities and constraint features (if
present) would not be captured by this statistic; an
examination of crossplots between the different ele-
ments can easily reveal any complex relationships. In
all cases, the determination of the secondary variable
was based on careful assessment of the relevant
bivariate and trivariate distributions.

Declustering was performed to assemble repre-
sentative distributions for each variable. Given the
multivariate nature of this dataset and the intended
application of a multivariate transformation tech-
nique, declustering must be consistent between all
variables. Although the location map of drillholes
(Fig. 3) shows a fairly regular grid of data, it must be
noted that data across all rock types are shown;
declustering must be performed within rock types,
across geological boundaries (based on an available
geology model, which results in irregular data spac-
ing). The re p resentative distribution of Zn was
obtained by using the accumulated weights obtained
from kriging within a rock type; this approach not
only respects the rock type being populated, but it
also respects the spatial variability of the data and
hence their area of influence within this rock type.

S e c o n d a ry variables (say Pb) were declustere d
t h rough a bivariate calibration of the Pb distribution
using both the re p resentative distribution of Zn and
the crossplot of Zn and Pb. Specific a l l y, the re p re s e n t a-
tive distribution of Zn is divided into a series of classes
and the corresponding conditional distributions of Pb
a re determined. The re p resentative distribution of Pb is
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Table 1. Transformation ordering for stepwise conditional
transformation

Transform No. Variable Conditioning Variable(s)
1 Zn 
2 Pb Zn
3 Fe Zn, Pb
4 Ba Zn, Fe
5 sPb Zn, Pb
6 Ag Zn, Pb
7 TOC Zn, Fe

Fig. 3. All available drillhole data projected onto a horizontal plane (plan view, left) and onto a vertical plane (E-W
sectional view, right).
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then constructed by accumulating all of the condi-
tional distributions weighted by the representative
probability of Zn for the corresponding class (Figure
5). For all tertiary variables, the same rationale was
applicable, and the representative histograms for Fe
through TOC were determined using the representa-
tive histograms for the two dependent variables plus
the trivariate calibration data.

Stepwise conditional transformation was then
performed on these representative distributions. Fig-

ure 6 shows the scatterplots
of the variables re s u l t i n g
f rom the first transform
sequence of Zn, Pb, and Fe
(Table 1). The transformed
variables are independent
and multi-Gaussian, which
translates to a circular shape
in the crossplot. From Figure
6, the crossplot between the
first two variables (Zn and
Pb) appears appro x i m a t e l y
circular. Crossplots with the
third variable (Fe, in this case)
show some banding; how-
ever, this is simply a numeri-
cal artefact of having many
classes and, consequently,
fewer data within each class
(Leuangthong, 2003). This
banding does not impact
data reproduction. Indepen-
dence of the transform e d
variables means that each
variable can be simulated
independently.

Va r i o g r a m s w e re then
calculated and modelled for
each of the transformed vari-
ables. Figure 7 shows an
example of the horizontal
and vertical variogram mod-
els for the stepwise condi-
tionally transformed Zn, Pb,
Fe, and Ba for one rock type.
Note that secondary and ter-
tiary variables exhibit a  rela-
tively high nugget eff e c t ;

because the transform imposes independence for col-
located data by transforming each class separately, a
high nugget effect of subsequently transformed vari-
ables is understandable (Leuangthong and Deutsch,
2003). Further, cross variograms were calculated and
checked to confirm approximately zero correlation for
all lag distances.

Sequential Gaussian simulation was independ-
ently performed for the seven transformed variables
on a by rock type basis. A total of 40 realizations were

generated for each
variable within each
rock type. For greater
computational eff i-
c i e n c y, only those
blocks belonging to
the specific rock type
were simulated. Each
realization was then
back transformed to
the original units of
the data. Similar to
the forward transfor-
mation that relied on
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Fig. 4. Numerical example of SCT for two variables, Zn and Pb: a) transformation of the primary variable, Zn; b)
determination of corresponding conditional distribution for the secondary variable, Pb; and c) transformation
of Pb using the conditional distribution determined based on paired Zn value. Only those statistics and plots
relevant to the transform are shown.

Fig. 5. Schematic illustration showing multivariate calibration data, representative Zn histogram and representative Pb
histogram to be determined (left); division of multivariate calibration data into multiple classes, with distributions on the
right representing the conditional distribution of Pb for each class (right). Weights applied to conditional Pb distribution
all shown in light blue, gray, and orange shaded regions of Zn histogram.
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conditioning one variable to
another, the back transformation
for each simulated re a l i z a t i o n
must be performed in a condi-
tional fashion. For example, the
back transform of Fe is conditional
to the simulated values for Zn and
Pb.

The simulations were thor-
oughly checked to ensure repro-
duction of (1) the composite
values at their respective locations,
(2) the histogram and associated
summary statistics, and (3) the var-
iograms in Gaussian space of the
stepwise transform scores. Repro-
duction of these three statistics is
not unexpected, as the theoretical
development of Gaussian simula-
tion is formed on this very basis
(Journel, 1989). For this multivari-
ate simulation, the multivariate
relations were also checked. The
simulated models were upscaled
to 7.6 m by 7.6 m by 7.6 m (25 ft
by 25 ft by 25 ft) blocks to facili-
tate comparisons with the 7.6 m
(25 ft) composites and also the
existing long-term model.

Figure 8 shows a comparison
of the crossplot reproduction from
simulation to those cro s s p l o t s
from the 7.6 m (25 ft) composites
and the existing long-term
resource model. In general, the
simulated realizations re p ro d u c e
the trivariate relations with com-
parable variability to the 7.6 m (25
ft) composites; the corresponding
plots from the existing long-term
model shows similar bivariate rela-
tions, but with noticeably reduced
variability. Recall that it is this vari-
ability between the multiple ele-
ments that was impacting the Zn
recovery and provided the motiva-Fig. 7. Horizontal (left) and vertical (right) variograms for stepwise conditionally transformed Zn, Pb, Fe, and Ba for one rock type.

Fig. 6. Crossplot between stepwise conditionally transformed variables for Zn, Pb, and Fe. Zn was transformed first, then Pb was transformed conditional to Zn, and finally Fe was
transformed conditional to both Zn and Pb.
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tion to undert a k e
such a case study.

Once all simu-
lated models were
generated and vali-
dated on a by ro c k
type basis, a single
realization for each
variable was obtained
by merging the simu-
lated pro p e rties fro m
each rock type. Wi t h
these multiple re a l iz a-
tions (Figure 9), the
u n c e rtainty at any
location and/or re g i o n
can be assessed.

COMPARISON OF
PROFIT EXERCISE

In practice, mul-
tiple variables are
estimated independ-
ently with ord i n a ry
kriging. This section
a d d resses the impact
of the multivariate
simulation appro a c h
using the stepwise
conditional trans-

f o rm relative to the conventional prac-
tice of kriging. Note that this exerc i s e
is for illustrative purposes only; prices
and re c o v e ry functions have been syn-
thetically developed and greatly sim-
plified for this specific exerc i s e .

The idea is to compare the profit of
ore from both methods with true refer-
ence data coming from Red Dog. A
profit function is applied to obtain a
true profit dataset. A subset of the ref-
erence data will be extracted and used
to model the grades using both kriging
and simulation. The profit function will
be applied to these grade models.
Based on the expected profit from each
a p p roach, each location within the
model will be classified as either ore or
waste. The true profit at each location
is known, so the pro fit from each
model can be calculated.

PROFIT FUNCTION

The real profit function was not
available; a simple profit function was
developed to account for Zn and Pb
grades, recovery functions, and metal
prices. At the time of this work, Teck
Cominco was developing new func-
tions based on extensive metallurgical
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Fig. 8. Comparison of multivariate features reproduction for Zn-Pb (top row), Zn-Fe (second row), Pb-Fe (third row), and
Zn-Ba (bottom row). Cross-plots using the 7.6 m (25 ft) composites are shown on the left column, from the upscaled
simulations are shown in the middle, and from the available long-term resource model are shown in the right column.

Fig. 9. Simulated realizations of Zn at 3.8 m (12.5 ft) grid resolution.
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testing to reflect the impact of Ba on Zn recovery. In
light of this activity and given that the presence of
contaminants such as Ba and Fe would affect Zn
recovery, penalty functions to account for this impact
were considered. The Pb recovery is constant.

The constructed models provide the metal
grades. All other parameters were developed or
chosen to be constant. The metal recoveries for
both Zn and Pb were calculated as Red Dog’s five-
year average re c o v e ry (1998-2002), based on Te c k

C o m i n c o ’s financial re p o rt (Teck Cominco, 2003).
These were 83.6% Zn re c o v e ry and 58.7% Pb
re c o v e ry. The penalty functions, constructed to
mimic the impact of Fe and Ba on Zn re c o v e ry
( d e c reasing functions on a scale of 0 to 1.0), were
used to determine a multiplicative factor for the
maximum Zn re c o v e ry of 83.6%; in this way, high
Fe or Ba content would result in reduced Zn re c o v-
e ry. The price for Zn was chosen to be $680/ton of
Zn, and the price for Pb was chosen as $380/ton of
Pb; both prices were approximated based on the
metal prices from the London Metal Exchange in
2003. In order to yield approximately 50% ore and
50% waste classification, the cost per ton mined
was chosen arbitrarily.

REFERENCE DATA

For a fair comparison to be made, real data must
be used. The density and number of BH data available
make it an attractive database as a reference data set.
Rather than modelling the entire area, only a small
area was modelled. The area was chosen to be in a
marginal zone, where ore/waste classification based
on the models would have the largest impact.

Figure 10 shows the available BH data in the cho-
sen region of 120 m by 120 m (400 ft by 400 ft) in
the 850 bench, and the subset of data extracted from
this region. The available data consists of 532 BH
samples of Zn, Pb, Fe and Ba. From this dataset, 25
samples separated at a nominal 30 m by 30 m (100 ft
by 100 ft) spacing were chosen to act as exploration
data. This spacing is consistent with the DH data
available for Red Dog. This subset of data was used as
conditioning data for kriging and simulation.

MODEL CONSTRUCTION

The model grid was chosen to be 3 m by 3 m by
7.6 m (10 ft by 10 ft by 25 ft), which is similar to the
3 m by 3.7 m by 7.6 m (10 ft by 12 ft by 25 ft) spac-
ing of the BH data. A total of 1,600 grid points were
modelled. Further, variograms for both approaches
were calculated and fitted using the reference 532 BH
data. This filtered out the influence of poor variogram
inference due to scarce data.

The variograms for kriging were calculated for
the original data, and the variograms for simulation
were calculated and fitted for the stepwise condition-
ally transformed data. In both sets of variograms, a
trend was apparent from the experimental points
extending beyond the sill of 1.0. This was not surpris-
ing given that the area was purposely chosen to be in
the transition zone between ore and waste; hence, a
trend from low to high grades was expected. Trend
modelling was not perf o rmed for this exerc i s e
because of the relatively small area.

For kriging, each variable was estimated independ-
ently using ord i n a ry kriging. For simulation, the stepwise
conditionally transformed variables were independently
simulated using sequential Gaussian simulation to gen-
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Fig. 10. Location map of reference BH data (left) and sampled BH data (right) for use in comparing
model approaches.

Fig. 11. Comparison of profit map for ore/waste classification from kriging (left) and simulation (right).

Fig. 12. Comparison of true ore/waste classification (top) and the classification from kriging (bottom
left) and simulation (bottom right) at data locations.
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erate 100 realizations of the grades and subsequently
back transformed to the original units of the data.

RESULTS

These grade models were then processed by
applying the profit function at each location within
the model. Although 100 realizations of profit were
available from simulation, the ore/waste classification
was based on the expected profit map obtained by
calculating the expected value of profit at each loca-
tion. Figure11 shows the profit map obtained from
simulation and kriging.

Although 1,600 locations were modelled, only
the 532 points corresponding to locations where true
data were available can be compared. At these loca-
tions, the true profit was known. The profit model
from kriging and expected profit model from simula-
tion were used to classify the 532 locations as either
ore or waste. Figure 12 shows the comparison of the
ore/waste classification of the 532 locations from the
true reference data to the kriging and the simulation
approaches. Overall, both approaches clearly show
the waste and ore regions; relatively few blocks were
misclassified.

Table 2 shows the summary of the ore / w a s t e
classification from both kriging and simulation re l a-
tive to the true classification. The tables show that
the kriging approach resulted in a total 7% of blocks

that were misclassified, compared to the 6% mis-
classified by simulation. From the true profit, 251
blocks (47% of the true data) were classified as ore ;
simulation correctly classified ore for 98% of those
blocks, while kriging correctly classified 90% of
those blocks.

For those blocks classified as ore, the profit of ore
mined as a result of the classification from each
method was compared with the true profit of $7.89
million. The results from such a comparison showed
that the simulation approach yielded $7.28 million,
while kriging yielded $7.06 million in profit. Although
these profit values appear high for the relatively small
a rea of a single bench, the relative perc e n t a g e
increase in profit is the key result. Multivariate simu-
lation resulted in 92% of the true profit relative to the
89% yielded by kriging. In practice, this 3% differ-

ence may translate to several millions of dollars in
increased profit if a larger area and multiple benches
are considered.

CONCLUSIONS

For the seven variables within the eight rock
types, conditional simulation models were con-
structed using the stepwise conditional transforma-
tion technique to account for the multivariate
relations. These models were developed using 3.8 m
(12.5 ft) composites and a geology model at 7.6 m
(25 ft) resolution. Each model was validated by check-
ing reproduction of the input drillhole data, represen-
tative histogram, variogram, and the multivariate
distributions.

Conventional Gaussian cosimulation approaches
are sufficient for straightforward multivariate prob-
lems; however, for the complexity of the Red Dog
deposit, these common approaches are inadequate.
The availability of multiple metal grades within multi-
ple rock types warrants some consideration of the
relationship between these grades, and how these
relationships change from one rock type to the next.
The approach documented in this paper was
designed to explicitly address this key issue. Conse-
quently, the resulting models not only reproduce the
univariate data and its spatial variability, but taken
together, they also honour the multivariate relations

between the diff e re n t
metals/minerals within the differ-
ent rock types.

A comparison of the multi-
variate simulation approach used
in this case study and the com-
mon practice of kriging multiple
variables independently showed
that the simulation models
resulted in an increase in profit of
3% over the kriging approach,
yielding a total of 92% of the
true profit.
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Table 2. Ore/waste classification summary of kriging (left) and simulation (right) relative to true
ore/waste classification. The top row shows the number of locations classified, while the bottom
row shows the percentage of locations classified relative to the true classifications given by the
totals listed in the top tables.

True True
Ore Waste Ore Waste

Kriging Ore 225 11 Simulation Ore 246 27
Waste 26 270 Waste 5 254
Total 251 281 Total 251 281

True True
Ore Waste Ore Waste

Kriging Ore 90% 4% Simulation Ore 98% 10%
Waste 10% 96% Waste 2% 90%
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