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Semivariogram Models Based on Geometric Offsets1
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3

Kriging-based geostatistical models require a semivariogram model. Next to the initial decision of 4

stationarity, the choice of an appropriate variogram model is the most important decision in a geo- 5

statistical study. Common practice consists of fitting experimental semivariograms with a nested 6

combination of proven models such as the spherical, exponential, and Gaussian models. These mod- 7

els work well in most cases; however, there are some shapes found in practice that are difficult 8

to fit. We introduce a family of semivariogram models that are based on geometric shapes, analo- 9

gous to the spherical semivariogram, that are known to be conditional negative definite and provide 10

additional flexibility to fit semivariograms encountered in practice. A methodology to calculate the 11

associated geometric shapes to match semivariograms defined in any number of directions is pre- 12

sented. Greater flexibility is available through the application of these geometric semivariogram 13

models. 14
15

KEY WORDS: nested structures, kriging, stochastic simulation, geostatistics. 16

INTRODUCTION 17

Kriging-based geostatistics is routinely used for estimation and simulation of 18

continuous and categorical geologic properties. The random function paradigm 19

of geostatistics involves three main steps: (1) definition of the variable and the 20

stationary domain for the variable {Z(u), u∈A}, which involves the definition 21

of rock types/facies and large scale trends, (2) establish a semivariogram model 22

for the variable, γ (h), that is valid for all distances and directions found in the 23

domain A, and (3) make inferences with kriging and Monte Carlo simulation. The 24

reasonableness of the inferences depends on the first two steps (Pyrcz and others, 25

in press). The expert site-specific decision of a stationary domain is arguably the 26

most important; however, the calculation and fitting of a semivariogram model 27

is also very important. The inference step is largely automatic once the first two 28
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steps are taken. This paper is aimed at the second step of establishing a valid29

semivariogram model. The conventional method of modeling semivariograms30

by nested structures is reviewed. A suite of geometric semivariograms and a31

method for constructing new geometries that match custom continuity styles are32

presented. These geometric semivariogram models allow for greater flexibility in33

the generation of permissible semivariogram models.34

CONVENTIONAL SEMIVARIOGRAM MODELING35

The semivariogram characterizes spatial variability of the variable under36

consideration. Semivariogram models must be conditional negative definite; the37

covariance counterpart must be positive definite. This mathematical property en-38

sures that the semivariogram is a licit measure of distance and that all resulting39

variances will be non-negative for all possible configurations of conditioning data40

(Journel and Huijbregts, 1978, p. 35).41

Experimental semivariogram points are calculated in the principal directions42

allowing for some distance and direction tolerance to find sufficient pairs. The43

experimental points are fitted with a sum of nested structures:44

γ (h) =
nst∑
i=0

Ci�i(h) (1)

where nst is the number of nested structures, i = 0 is commonly reserved for the45

nugget effect. The Ci values are the variance contribution of each nested structure;46

they must be non-negative. The �i(h) functions are valid semivariogram functions47

defined by a shape (e.g., spherical, exponential, Gaussian), rotation angles to allow48

the vector h to be represented in the principal directions of continuity (h1, h2, h3),49

and range parameters (a1, a2, a3) to account for anisotropy. Standardized distances50

are calculated with the following equation:51

h =
√(

h1

a1

)2

+
(

h2

a2

)2

+
(

h3

a3

)2

(2)

The standardized distance h is at the range of correlation in all directions. The52

standardized shape converts the scalar h to a standardized variogram value �(h).53

Semivariogram modeling has relied on fitting known conditional negative54

definite functions such as spherical, exponential, and Gaussian models. Linear55

combinations of the semivariogram models and products of covariance models56

are also valid functions (Deutsch and Journel, 1998, p. 24). While this provides57

a workable mechanism for modeling most semivariograms, there are some cases58

that do not well fit with this framework. Figure 1 shows an example structure59
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Figure 1. An example semivariogram that is not well fit by nested
sets of traditional variogram models.

commonly observed in experimental semivariograms that is not easy to fit with 60

the conventional structures. 61

The application of more flexible semivariogram modeling is inhibited by the 62

difficulty in ensuring conditional negative definiteness. There is a largely unex- 63

plored suite of conditional negative definite models known as geometric semivar- 64

iograms that provides additional flexibility. They are genetically guaranteed to be 65

conditional negative definite and therefore avoid the burden of proof required by 66

arbitrary semivariogram functions. 67

The covariance is related to the semivariogram under second-order station- 68

arity: 69

C(h) = σ 2 − γ (h) (3)

where C(h) is the covariance and σ 2 is the variance. For ease of interpretation, 70

semivariogram tables are shown as covariance tables since this is the common 71

convention in kriging-based geostatistics, as covariance values provide improved 72

stability in the solution of kriging matrices (Deutsch and Journel, 1998). 73

GEOMETRIC SEMIVARIOGRAMS 74

Semivariogram models based on a moving average of a generalized Poisson 75

process are conditional negative definite (Matérn, 1960, p. 28). Geometric semi- 76

variograms result from the special case of spatial convolution where the weighting
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Figure 2. An example geometric object and the result-
ing geometric variogram in the horizontal direction. The
semivariogram model is anisotropic.

function is reduced to a Dirac function of the form:77

f (u) = iv(u) =
{

1, if u ∈ V

0, if u /∈ V

78

F (u) = Kv(h) =
∫

iv(u) · iv(u + h) du (4)
79

γ (h) = 1 − Kv(h)

Kv(0)

This amounts to the volume of intersection Kv(h) of any geometric object, V, with80

itself offset by a lag vector, h scaled by the volume of the geometric object, Kv(0).81

Construction of a geometric semivariogram is illustrated in Figure 2.82

A conditional negative definite model in n-D is valid in any less or equal83

dimensional space; for example, the spherical semivariogram, based on a 3-D84

geometry, is valid in three, two and one dimensions, a circular semivariogram,85

based on a 2-D geometry, is valid in two and one dimensions and the triangular86

semivariogram, based on a 1-D geometry, is valid only in one dimension.87
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In some cases analytical equations may be available for the volumes of 88

intersection. Numerical integration can always be used for complicated geometric 89

objects. The volume of intersection is calculated as: 90

γ (h) =
nz∑
iz

ny∑
iy

nx∑
ix

i(ux, uy, uz)

︸ ︷︷ ︸
K ′

V (0)

−
nz∑
iz

ny∑
iy

nx∑
ix

i(ux, uy, uz) · i(ux + hx, uy + hy, uz + hz)

︸ ︷︷ ︸
K ′

V (h)

(5)

where i(ux, uy, uz) and i(ux + hx, uy + hy, uz + hz) are indicators set to 1 within 91

the object and 0 outside the object and K ′
V (0) is the discretized volume of the ge- 92

ometry and K ′
V (h) is the volume of intersection given the component lag vectors 93

hx, hy, hz of lag vector h. The result is a discrete covariance model for kriging 94

or simulation. This discrete covariance model may be represented as a covari- 95

ance table that may be loaded directly into kriging or a kriging-based simulation 96

algorithm. 97

Limitations of Geometric Semivariogram Models 98

Geometric semivariogram models have some limitations in their form. (1) 99

It is not possible to model a semivariogram above the sill variance (see Eq. (5)). 100

This precludes the modeling of trend and hole effect continuity structures. (2) 101

The semivariogram is linear at small lag distance. The linear feature at small 102

lag distances prevents geometric semivariogram models from reproducing high 103

short range continuity as seen with the Gaussian semivariogram model (Deutsch 104

and Journel, 1998). (3) The semivariogram model is only known at discrete lag 105

distances, unless the analytical solution is known (i.e., spherical semivariogram 106

model). The geometry and semivariogram table are constructed to match a specific 107

regular grid; therefore, the semivariogram may only be applied to calculate the 108

covariance between points on this grid. These models are suitable for simulation 109

of values on a detailed regular grid, which is increasingly common in geostatistical 110

calculations. The data are assigned to the nearest grid node. 111

Some Isotropic Geometric Semivariogram Models 112

Isotropic geometric semivariogram models result from isotropic geometric 113

objects. This is limited to combinations of lines (1-D), circles (2-D), spheres (3-D) 114
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Figure 3. A series of hollowed sphere semivariogram models. The sphere radius, r2, is set to
1.0 and the radius of the hollowing is varied.

and hyperspheres (n-D, n>3). These geometric models account for anisotropy by115

scaling the component vectors (Eq. (2)).116

The spherical semivariogram model is used frequently. The spherical model117

is based on the standardized volume of intersection of two spheres separated by a118

lag vector (h) as defined (Serra, 1967).119

γ (h) = 1 − volume(h)int

volumetotal
(6)

where volume(h)int is the volume of intersection and volumetotal is the total volume120

of the geometric object.121

A variety of other isotropic geometric semivariogram models may be calcu-122

lated by hollowing of the geometric object. For example the circle in 2-D may be123

changed to an annular region or the sphere in 3-D may be changed to a hollow124

sphere. The hollow sphere results in a novel series of conditional negative definite125

3-D semivariogram models parameterized by the inner radius (r1) or fraction of126

hollowing. A series of hollowed spherical semivariogram models are shown in127

Figure 3.128

In the limiting cases this semivariogram is equivalent to the spherical model129

when r1 equals 0.0 (the sphere is not hollowed) and approaches the nugget ef-130

fect as r1→r2. The difference between the hollowed spherical semivariogram131

and the spherical semivariogram is equivalent to the volume of intersection132

lost due to the hollowed inner sphere (Figure 4). An example hollowed sphere133

(fraction hollowed 0.75) geometry and resulting covariance table are shown in134

Figure 5.135
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Figure 4. Volumes v1, v2, and v3 (A, B, and C): a traditional spherical
variogram model is equal to standardized v1 subtracted from the contri-
bution. The hollowed sphere model is equal to the spherical minus v2
plus v3.

Anisotropic Geometric Semivariogram Models 136

Any geometric shape in any dimension leads to a valid semivariogram model. 137

Slices through an approximated shape of a point bar inclined heterolithic strata 138

(IHS) are shown on the top of Figure 6. The covariance table is calculated for this 139

object and is shown on the bottom of Figure 6. This geometric object has resulted 140

in a complicated anisotropic covariance table. 141

There are a variety of geologic geometries that may be applied to calculate 142

semivariogram models. For example, characteristic geometries of architectural 143

elements from fluvial depositional settings such as lateral accretion, downstream 144

accretion, and channel fills (Miall, 1996, p. 93) may be suitable. 145

A semivariogram model constructed by an elementary geologic shape does 146

not necessarily mean that the resulting kriged or simulated models will reproduce 147

Figure 5. Center slices through the rasterized geometric object and the resulting covariance table
for the hollow spherical model with a hollowed fraction of 0.75.



Pyrcz and Deutsch

Figure 6. Center slices through the raster geometric object and the resulting covariance table for a
possible IHS point bar variogram.

those shapes. In fact, the underlying indicator semivariogram model for spheres148

(of proportion p = 1 − p0) embedded randomly within a matrix is related with149

the spherical variogram, but is not the spherical variogram:150

γ (h) = p0

(
1 − p

Sph(h)
0

)
(7)

Equation (7) could be generalized to account for any geometric variogram in the151

exponent. Another approach would be to directly calculate the geometry that will152

match an experimental semivariogram model.153

SCULPTED GEOMETRIC SEMIVARIOGRAMS154

A method is presented to calculate the geometry to match a target semi-155

variogram in specified directions. An initial geometry is iteratively eroded and156

dilated. Changes that improve the match between the current geometric model157

and the target semivariograms are accepted. The resulting geometry may be ap-158

plied to calculate covariance tables for kriging and simulation.159

The Inputs160

Custom geometric semivariograms may be constructed to match continu-161

ity structures defined in any set of directions. These continuity structures are162

represented as tables with the target semivariograms and associated lag distance.163
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The practitioner will apply site specific information and professional judgment 164

in assigning these target directional semivariograms. It is anticipated that these 165

models will be fit to at least the principal directions, with additional directions 166

added to further constrain the resulting model. 167

The Initial Geometry 168

Initial geometry is coded such that the final model may not have a range 169

greater than the longest identified range nor less than the shortest identified range. 170

The geometry is initialized with an outer ellipsoid of diameter equal to the largest 171

range in all specified directions and an inner ellipsoid of diameter equal to the 172

shortest range. No location outside the outer ellipsoid is allowed to be part of 173

the geometry. Locations inside the inner ellipsoid are not to be taken away from 174

the geometry. The remainder of the space may be switched between 1 and 0 175

iteratively to improve the reproduction of the target directional semivariograms 176

(Fig. 7). There is no analytical model of anisotropy used for off-diagonal direc- 177

tions, unlike the assumption of an ellipsoidal continuity in the off-diagonal direc- 178

tions in traditional semivariogram models (Fig. 8). Multiple sculpted geometric 179

semivariogram models may be calculated to represent this uncertainty in the 180

Figure 7. An initial 2-D geometry based on fit semivariograms in three directions. The area outside
a circular geometry with a diameter equal to the longest identified range (direction A) is set as
permanently outside the geometry. A circular geometry with a diameter equal to the shortest identified
range (direction C) is set as permanently inside the geometry. The remainder may be modified
iteratively to fit the semivariograms in each identified direction.
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Figure 8. The constraints on sculpted geometric semivariogram models. The major and minor prin-
cipal directions (directions A and B respectively) and the traditional anisotropy ellipsoid are shown.
The sculpted semivariogram model is constrained such that the range in the off-diagonal directions
(such as direction B) may not exceed the range in the major direction or be exceeded by the range in
the minor direction. The anisotropy may be expressed in various forms within this constraint.

off-diagonal directions. If adequate information is available, experimental semi-181

variogram fits in off-diagonal directions may be integrated to further constrain the182

model.183

Zonal anisotropy may be included by setting the initial diameter large relative184

to the size of the covariance lookup table.185

The Iterations and Convergence Criteria186

An objective function is applied to characterize mismatch between the target187

and sculpted geometric semivariogram models. This objective function is shown188

below:189

O =
nDir∑
i=1

nLag∑
j=1

∣∣γ geo(hi,j ) − γ t(hi,j )
∣∣ (8)

where γ geo(hi,j ) and γ t(hi,j ) are the current geometric and target semivari-190

ogram models for each indicated direction, i, and lag, j. This objective func-191

tion weights all lag distances equally. It is common practice to focus on fitting192

short scale structures, the addition of a weight (such as 1/hi,j ) would account193

for this.194
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The nodes within the modifiable zone (Fig. 7) are visited in order from the 195

outside inwards. This ordering is based on the distance function of initial geometry 196

(Vincent and Algorithms, 1993). This amounts to the assignment of the distance 197

to the nearest periphery of the geometry at all nodes within the geometry. The 198

distance function is sorted in ascending order with pointer arrays permuted. 199

For each location, the geometry code is switched. The location within the 200

current geometry is eroded (i(ui) = 1 → 0) or outside the current geometry di- 201

lated (i(ui) = 0 → 1). The objective function is updated and if the perturbation 202

reduces the objective function it is accepted. The algorithms proceeds until either 203

a maximum number of iterations are performed or until a specified number of 204

iterations occur without acceptance of a perturbation. 205

Example Sculpted Semivariogram Models 206

A large suite of sculpted semivariogram models were calculated. Many un- 207

conditional 2-D simulation models were calculated with a variety of input semi- 208

variogram parameters (ranges, nugget effects, anisotropies and structure types). 209

Then the experimental semivariograms were calculated for the 0◦, 45◦, 90◦ and 210

135◦ azimuths. These experimental semivariograms were applied as input for the 211

construction of 2-D sculpted geometric semivariograms. The resulting covariance 212

tables were checked for ill conditioned covariance matrices; all variances were 213

positive (as required by theory) and all kriging weights were reasonable minus 214

[−1, 1]. 215

An example of 2-D sculpted geometric semivariogram model is shown in Fig- 216

ure 9. This example demonstrates the flexibility and some limitations of sculpted 217

semivariogram models. Note that the trend in the input directional variograms 218

is not reproduced since geometric models may not exceed the sill. The zonal 219

anisotropy is not reproduced since the largest range was set to 40 units. 220

Another example of 2-D sculpted geometric semivariogram model is shown 221

in Figure 10. This model represents a phenomenon with a high nugget effect and 222

a high degree of anisotropy. Note that the nugget effect is reproduced by a lack of 223

contiguity in the geometry and the anisotropy results in anisotropy in the geometry. 224

Another method for incorporating the nugget effect is to model other continuity 225

structures and then add the nugget effect to this discrete model. 226

SEMIVARIOGRAM MODELING PROCEDURE 227

The flexible semivariogram modeling is summarized. This methodology re- 228

quires the following steps: (1) assess the continuity of the modeled phenomenon 229

in at least the principal directions, (2) construct a geometric object either from 230

characteristic geometries or by the iterative method introduced in this paper with a 231
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Figure 9. A 2-D geometry and covariance table for a sculpted geometric semivariogram model
based on a phenomenon with high continuity. The initial geometry, the target directional models
and resulting sculpted geometric semivariogram models in 0◦, 45◦, 90◦ and 135◦ directions are
shown. The longest range of continuity was assigned as 40 units. The target models are experimental
semivariograms from unconditional sequential Gaussian simulation.

resolution greater than or equivalent to the resolution of the model to be estimated232

or simulated, (3) calculate a discrete covariance table from this geometry, (4)233

load this covariance table into the kriging or simulation algorithm. These direc-234

tional models may be regression fits of the experimental semivariogram points, or235

even hand drawn. The key is to build models that integrate the available geologic236

information.237
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Figure 10. A 2-D geometry and covariance table for a sculpted geometric semivariogram model
based on a phenomenon with high anisotropy and large nugget effect. The initial geometry, the
target directional models and resulting sculpted geometric semivariogram models in 0◦, 45◦, 90◦ and
135◦ directions are shown. The target models are experimental semivariograms from unconditional
sequential Gaussian simulation.

CONCLUSIONS 238

The choice of semivariogram model has a major affect on kriging and kriging- 239

based simulation. These models are commonly modeled as nested combinations 240

of proven models. Geometric semivariogram models provide a suite of condi- 241

tional negative definite models for improved semivariogram modeling flexibility. 242
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A flexible method has been presented for constructing geometries for geomet-243

ric semivariograms that reproduce spatial continuity identified in principal and244

additional directions.245

The required computer code is straightforward and efficient and is available246

from the authors. All semivariogram models proposed here are guaranteed to be247

conditional negative definite; therefore, there are no issues with implementation.248

Flexible fitting of semivariogram models allows for greater focus on the avail-249

able experimental semivariogram and geologic information without the limitation250

imposed with the traditional method of nested structures.251
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