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ABSTRACT

The problem of estimating the efective vertical permeability in heterogeneous reservoirs
is uddressed, A binary type permeability distribution with spatial autocorrelation is used
to model the >andstone anti shale in a shaly sandstone reservoir. A power averaging
process jor the component permcabilities is assumed. The averaging power has been
related to parameters that may be inferred in practical circumstances. The tw.~ proposed
factors may be injerred from an indicator variogram describing the gt ometrical
relationship between the shales and the sandstone matrak. If detailed information is
available at an appropriate reservoir block scale, more precise approximations of the
power oj averaging may be made.

At this stage the propmed technique has been developed on simulated reservoirs. The
simulations have been done with rigid statistical control so that the anisotropic nature of
the shale heterogeneities may be captured. The actual block eflective permeability (power
oj uueragingj oj the reservoir blocks is determined !hrough steady state, single phase flow
simulation. The reservoir uni:s contain no more than 90% shafe by voiume and t,+e
emphasis has been on studying j70w normal to the bedding plane. Improvements on tht
traditional geometric average for vertical permeability are immediately evident.
KEYWORDS: Permeability, Power Averaging, Geostatistics

INTRODUCTION

The important problem of scale averaging is one that is beginning to receive more

attention. An “average” is a unique value that would describe a volume given a set of

measurements based on smaller volumes contained within the larger volume.

When considering a heterogeneo~s medium such as a sandstone/shale reservoir

many of the variables in question may be averaged arithmetically. The average porosity

of a volume is simply the arithmetic average of the porosities ot’ ~i. the smaller volumes
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that constitute it. In general the arithmetic averaghg process applies to all var!ables

such as saturations or volume/weight perce?t.ages of v?rious phzses.

There are other characteristics that are not additive. Absolute or relative

permeability and capil~dry pressure are in this category. The average 01 variables such

ss these depend not only on the univariate distribution of the v~riable based on small

elements! volumes, but the average is dependent on the complete spa ;ial and

multivariatc distribution of ~he variable. The intrinsic meaning of these characteristics

-an be questioned at a very basic level. The meaning of permeability only becomes

evident when one considers an externally applied pressure drop to a fixed spatial volume

of rocklporous media. These variables describe fundamental characteristics of a

rock/porous media when fluid is flowing in it. For this reason the problem of averaging

from one scale (i.e., core) to another (i.e., reservoir simulation block) is important.

If there is a significant proportion of shale in a sandstone reservoir $he impact of

the low permeability shalts may be appreciable. The shales will cause the effective

permeability to be less than the arithmetic average of the component sandstone and

shale permeabditles. The spatial di~t.r!~ution and continuity of the shales will determine

how great this eflect will be. 1! the shale bodies are continuous in the horizontal plane

the vertical permeability may ~e quite different from the arithmetic average. In practice,

the geometric average has been used for vertical permeability.” In this paper the actual

averaging process (averaging power) has been observed for simulated reservoir blocks. In

each simulated reservoir block

averaging process observed.

The numerical simulation

characteristics of the shale bodies are correlated to the

of an indicator grid and subsequen ~ calculation of the

associated effective permeability has been adapted from the procedure used by A.

Desbarats (1986). Throughout this paper the term “simulation” refers jointly to the

simulation of the indicator network and the flow simulation which provides the effective
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permeability of the heterogeneous media.

POWER AVERAGING FOR BLOCK EFFECTIVE PERMEABILITY

Tie power averaging formulation or the general mixture rule may be written for a

two component shale sandstone system. If certain physically plausible condition~. are met

(Korvin, ! WI) th” power averaging formulation is the only possible functional form of

the effective average of a composite material.

Soi -e formulae that make use of a power averaging approach include the Wyllie

“time-average equation” (lV,-llie et al, 1956), Meese and Walther’s “vugul~x carbonate

formula” (Meese and Walther, 1967), (Tegland, 1970, Mateker, 1971) for the sound speed

and effective attenuation in an alternating sequence of sand shale layers, and (Beck,

1976; Rzhevsky and Novik, 1971; Schon, 1971; Wooc!side and Messner, 1961; Grant and

West, 1965; Pearce, et al., 1973; etc. ) for the estimation of thermal and electric

conductivityof fluid filled sedimentary rocks.

The effective permeability of a block compaed of shale and sandstone may be

written as a power average of the component permeabilities:

.
1

—

)Kc = (p Ksh” + (1-p )“KM” “ for some real w, w#O.

K(= = Ksh P .K88 1-P

with:

Ke = Block

U=O,r

Effective Permeability.

Ksh = Permeability of the shales.

Kss = Permeability of the sandstone.

P = Proportion (volume fraction) of shale.

w = Power of averaging.

The averaging power (w) is constrained by the upper

corresponding to the arithmetic and harmonic averages

(1)

and lower limits 1.0 and -1.0

respectively. The geometric
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r,verage is found at u = 0. The power averaging model is not mbject to any a priori

hypothesis that can be validated or refuted. IL is simply a model allowing the problem

Of determining Kc to be shifted to the problem of determining w.

Figure 1 shows how the averaging power affects the resulting effective permeability

for a bimodal distribution of ~~rmeab~!ity (Ksh =0.1 md and Kss =1000.0 rnd ). The

traditional arith met ic, geometric, and harmonic averages are shown for reference. A:]

posible eflective permeability values may be expressed as a power average with the

averaging power between -1.0 and 1.0.

It nas been showD

and that the averaging

(for p less than 0.5).

that a power averaging approach is fesaible (Journel et al., 1986)

power is approximately independent of the proportion of shale

The dependence of the averaging power on easily inferred or

measurable statistical properties of a heterogeneous media has been attempted in this

study. There are clear connections between measures of connectivity, such as indicator

correlation in the flow direction, and the power of averaging.

GEOSTATISTICAL APPROACH

The geostatistical approach to estimating the power of averaging will now be

discussed. An indicator random function is defined so that the geometry of the shale

heterogeneities may be described. For a three dimensional (3-d) grid an indicator is

defined at each location as numerically equal to 1 if the location is in shale and O if not.

The shale intrusions may be imagined ss 3-d groupings of 1‘s.

The geometrical relationship of two different populations is to be captilred in a

limited number of summary statistics. The summary statistics should be e:>y to infer in

real situations. In practice one does not have the well defined indicator grid that is

available in numerical simulation, One may have well logs, core data, geophysical data,

and possibly production data. In this study the emphasis has not been on developing a
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method to predict the block effective permeability given the exact -~ale geometry. The

interest has centered on predicting the power of averaging with parameters that may be

inferred in practical circumstances. There is no doubt that if one can draw on. all the

information cent ained in an indicator network, the power of averaging could be inferred

more accurately.

Consider a reservoir block as part of a larger statistically stationary volume (i.e.,

the reservoir). As suggested above, the volume may be described by a numerical

indicator grid. The indicator variogram may be inferred from actual indicator data

and/or from soit geological description ~nd interpretation. It IS this variogram Lhat

link.. the shale geometry to the averaging power. Rather than the overall variogram

representative of the reservoir, a local model specific for each block would be preferred.

It is not the variogram directly that describes the ability of such a random field to

flow fluid. Some measures of connectivity that are related to the variogram and that are

specific for a particular block (i.e., statistically unique) are desired.

From this point forward we will roncern ourselves with regular three dimensional

grid networks that are described by an indicator network. Such a block is shown

schematically in figure 2(note: the large reservoir block shown belongs to a lar3er

reservoir not illustrated). In all subsequent mathematical elaboration the block will be

dt-cribed by finite sums of elemental sub-blocks.

GEOSTATISTICAL MODEL OI? THE PERIMEABILITY FIELD

The three dimensional reservoir blocks are made up of elemental sub-blocks that

are either 100~o shale or 100~o sandstone. The permeability of the elemental sub-blocks

may take one of two values, that of sandstone

indicator random function 1(z ) defined for each

z:

or that of shale. Consider the

elemental sub-block centered at

shale

point
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I(x)= 1 if z is in shale

= O if z is in sandstone

The complementary sandstone indic~tor random functio~ J(z) may be defined:

J(z) = 1-I(Z)

The indicator function 1(z) has the following first and second order moments:

(2)

(3)

E{l(z)}=p = volume fraction of shale in the block

Var {1(2)} = c(o) = p(l-p)

cov{l(z),~(z+h)} = c(h) = p(l-p) p(h)

~(h) =C(o) -c(h)

with p(h ) and Y(h ) being respectively the correlosram and variogram of the random

function 1(z).

~~.;~n a 3-d indicator field it is necessary to extract some simple and easily

predicted characteristics that would relate the 3-d configuration of shale to the ability of

the field to flow fluid (effective permeability). TWO evident factors would be a measure of

spatial continuity along the flow lines and a mexmre of spatial continuity perpendicular

to flow. .4s the spatial continuity of the shales in the flow direction increases the power

of averaging wouid increase. ~imdariy, as the spatial continuity of the shales iri the plane

perpendicular to flow increases, the power of averaging would decrease. A method will

now be proposed that determines two parameters that have the desired properties.

The two parameters proposed ( XL ) and flS ) ) may be calculated experimentally

given an indicator grid and a model for the variogram defining the larger stationary

volume. The variogram is required to provide a range of correlation in each of the

coordinate directions. Alternately these parameters may be calculated solely from the

variogram model if the only information available is an inferred variogram model. It will

be shown that these parameters may be used to predict the power cf averaging.

The spatial variance of ](z) along a length L representing the dimension of the

block in o~e of the coordinate directions may be written. Consider L in the ccmdinate
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direction x (ref. Journel and Huijbrects (1978) pp 67):

“-n,t-n, J

~z* ~~1 j~l~1 (Zi - ‘j);,(L,L )=-J-- (4)

The ergodic limit of this spatial variance is the variance of 1(z) ie. p (l-p). For a

measure of the spatial continuity the influence of the proportion of shale should be

filtered. Standardizing ~1 (L ,L ) to its ergodic limit the following continuity factor can

be defined:

?I(L J )
~“(L)= l-m,

Note that this is equivalent to the average correlogram

c [0,1] (5)

for the flow length L (hence the

P rmtation). A the continuity of the shales in a particular direc~ion increases Lhe p’(L)

will get closer to the upper limit (1.0), ss the continuity of the shales in a direction

becomes very low, or the block becomes very large, ~“ (L ) will approach the lower limit

(0.0).

It is alsodesirable to have a measure of coat;nuity that may be used for any size

block. In

variogram

variogram

rhe work that is done here all the block dimensions are relative to the

range. As the dimension of the block becomes large (ie. greater than the

range) ~’ (JZ) will asymptotically approach zero. The lack of correlation at

large distances will dominate the P“ (L ) regardless of the shGrt scale variogram structure.

What seems intuitively reasonable and is indeed the c~e, is that the correlation at

small distances would be more important than the correlation at mng dist:.nces. So in a

situation where an experimental @i actual rne=ure of the spatial continuity is to be

calculated a better estimate of flL ) would be weighted such that the short scale

structure has more influence. For each lag distance hl the average correlogram is defined

as ~hl ). Appendix A illustrates the calculation of ~hl ) given an indicator network.

A weighted sum of each ~h~ ) with appropriately chosen weights would have the
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properties that are desired. A weighted sum of this form may be written:

(6)

A XL ) equal to that given ;~

It is considered that

permeability does not change. If we

(=4 i ==0

1equation .5 wc Ild result if each Xl is set to —.
nz

after double the variogram range the block effective

variogram range all the weights are

decre~e linearly to zero at this point,

impose the condition that beyond two times the

set to zero, and that the weighting function will

the following weights may be assigned:

Al =bl-bzh~, allhl <2u

a = variogram range

[=n, -1

b ~, b2 = constants chosen suciI that ~ Xl = 1
1=0

A, = O, h~ > 2a

(7)

This system of weights is more justified than the unweighed average that is

implicitly assumed in equation 5. In actual network simulations it has been observed

that the correlations p(hl ) at small lags hi are more influential than those ac larger lags,

Also the weighted ~J5 ) may be used to predict the power of averaging more precisely

than the unweighed XL ).

A measure of the spatial continuity of 1(x) iu the plane perpendicular to flow may

h. aimilarlv ~alcu]ated The plane Perpendicular to flow will be denoted S . If :he fow is

vertical (z-direction) the x-y plane will be S . If horizontal flow (in the x-direction) is

being considered S will be the y-z plane.

In the numerical modelling of the fluid flow there is no flow in any diagonal

directions (except stepwise). For this reason the calculation of ~S ) is essentially a sum

of the P in the two directions defining S. If one was considering vertical flow (.SU z ,y ):



.

.

(8)

L=
a

‘LZ+LV
..

The weights h’ 1 and Y1 are determined in an identical fas~ion to hi given in

equation 7. The expected variogram range in the x and y directions need not be the

same. The weight a is introduced to correct for unequal L= and LE. It is important to

note that if either L, or LY is greater than two times the variogram range they should

be reset to 2’ a for the calculation of cx. This is equivalent to calculating ~S ) by

summing the contributing ~hf ) for all lags hl in the z and y directions.

Up to this point the actual connection between fiL ) , flS ) and u has not been

discussed. The ~ terms may be calculated if a variogram model and a block size is

provided. This relat. reship is discused next. The connection between experimentally

calculated F terms and the averaging power is then discussed in detail.

DEVELOPMENT OF T FOR AN EXTONENTLU VA.RIOGRAM

Given a variogram model and a block of fixed dimensions it is possible to calculate

what fl~ ) and ~S ) will be analytically. This has been done for the exponential

+)
variogram model with no nugget eflect: ~h ) = 1 - e( , with practical range a .

Figure three shows how XL) will change u a function of the dimensionless block

length. The analytical expression for XL ) as a function of the dimensionless blcck size is

given in appendix A. If the block cross section is square (with respect to an isotropic

variogram range) the XL ) for the length of one side will give ~S ). If this is not the

case one could read the “P corresponding to the dimensionless block length in each

direction and cor ~me the two arithmetically (consider the weigh’ @ given in equation 8).
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The p terms wdl decre~e to around 0.276 ss the size of the block exceeds two times the

variogram range.

TESTING AND IMPLEMENTATION

In the following sections the research steps and results will be outlined. The

stand ardized block model is as follows:

The dimensions of the simulated reservoir blocks have been expressed in terms of

the variogram range in the three coordinate directions. It has been assumed that there

is a finite range for 71 (h ) and that it will isotropic in the horizontal plane. There will be

a geometric anisotropy with the vertical range less than the horizontal range. The

discretization is expressed as the number of points that describe the variogram range.

For example: if the variogram range in a particular direction is 15 m (ie. u: = 15 m),

and the block size LZ is 30 m with sub-blocks each 3 m (dz ). The block length given

will be 2“a= and the number of discretization points will be presented u 5.

A constant shale permeability (Ksh ) of 0.1 md, and sandstone permeability IKss )

of 1000 md has been used throughout. An exponential variogram model with a vertical

to horizontal anisotropy 1/15 has been considered for the variogram -yI(h ):

hZ , hv , h, = rectangular coordinates of the vector h.

The geometrical anisotropy of 1/15 implies that the range of correlation in the vertical

direction is one fifteenth cf the horizontal range of correlation.

The study proceeded as follows:

1, A reservoir block filled in with a (O-1) network of elemental subblocks was
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simulated 4000 times with the volume proportion of

32.5%. Each simulation yields an effective block

m 15991

shale varying from 2.5% to

vertical permeability. The

averaging power that would identify the

calculated by numerical means knowing t)

2. For some of the actual grid networks used,

block effective permeability AUMthen

mwoportion of shale.

the grid was piotted in a series of cross

sections. Knowiug the power of averaging ~iated with each grid, a visual

inspection was made so that the reason for the differences in u could be explained.

All of the simulations considered for this particular exercise were at a constant

proportion of shale.

-. The corresponding XL ) and ~S ) (equations 6 and 8) were calculated. Recall that

these parameters could be inferred in practical situations.

4. A detailed regression study directed toward the estimation of u from XL) and flS )

was performed.

A large number of simulations were initially performed so that the dependence of w

on p , ~’(L ), and P*(S) could be evaluated. Only the case of “ertical flow was

considered, The block size was 0,8. az by 0.8. aV by 1.5. at , with a discretization of 5 by 5

by 10. The conjecture that w and p are approximately uncorrelated was found to be

valid, The correlation between w and p for the 4000 runs was found to be as 0.07.

The equal weighted p terms were retained in the simulation runs. As expected, a

positive correlation existed between WI and P’ (L ) and a negative correlation existed

between w and F“ (S ). However, a great deal of scatter was observed. Figures 4 and 5

illustrate this. Instead of plottl~g a scattergram with thousands of points the median

and quartiles of w based on prediction within small cl~es of ~“ are

scattergram of w versus ~’ (L ) as well as

included on figure 4. This allows one to

the figure showing the median

compare the actual scatter to

presented. The

and quartiles is

the measure of
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scatter indicated by the median and quartile lines. Presenting the results in this manner

is consistent with the ultimate objective of having parameters that will predict an w.

A poor correlation exists between WIand the ~“ terms. The correlation between w

and F* (L ) is 0.46, and the correlation between w and p’(S) is -0.21. Recall however that

the power of averaging for vertical flow is, in practice, taken w zero which corresponds

to the geometric average. From 5gures 4 and 5 the possibility of improving on this

traditional approach can be appreciated. This led to the next step where the actual

indicator grid was drawn to see if a relationship existed between w and the geometry of

the shale bodies that could be identified by visual inspection.

After inspection of the actual geometry of shale bodies a significant although not

surprising observation was made. The major factor contributing to the flow

performance of a heterogeneous block is the fraction of the cross section perpendicular to

flow, for all sections, that has no shale obstacles. However, this fractional area is not a

parameter that would be predictable in an inaccessible hydrocarbon reservoir, thus its

study has not been pursued further.

Upon a detailed look at the ~hf ) terms for various lag distances hl it INaS noticed

that w was more highly correlated to the ~hl ) terms for small hf. It was also evident

that this correlation dropped off in a linear fashion to near zero between 1 and 2 times

the variogram range. The block effective permeability stabilizes if the length of the

block exceeds double the variogram range. On the basis of these observations the P

terms defined in equations ? and 8 were proposed. Important considerations for

considering these p terms are:

Their simplicity and the poss bility of estimating them in practice.

. They completely characterize the bivariate (two points) distribution

bodies.

of the shalt



The equal weighted 7 and unequal weighted P were calculated for the grid networks

in this stage. The correlation between Q and the weighted P(L ) is 0.81, a substantial

improvement over the correlation between w and the unweighed T“ (L )=0.64. For ~S )

both cases yielded a correlation of -0.2. In all runs subsequent to this, both sets of F

terms have been calculated. It hu been observed that the weighted P terms yield better

results in all c=es,

The validation of this approach ha-s been carried out for the case of vertical flow.

Various block sizes and degrees of discretization have been considered. In each set of test

runs the relationship between the power of averaging and the experimentally calcuiased

indica~or correlation have been observed. “lhe chtiracteristics of

considered are given in table 1.

the five test cases

Five Test Cases Considered

(all distances are relative to the ranges of the variogram model (9))

Test Run Lx dx Ly dy Lz dz size

Base Case i),tl 7.5 0.8 7.5 1.5 6.7 6X6X1O

1. Discretization 11 0.8 6.3 0.8 6.3 1.5 6.7 5X5X1O

2. Small Block 0.4 12.5 0.4 ]~t5 2.0 5.0 5X5X1O

3. Large Block 2.0 2.5 ~,) ~,5 ~.) 5.0 5X5XI0

4. Large Block II 3)0 1.7 3.0 1.7 3.0 3.3 5X5X1O

Table 1: Characteristics of the test cases considered.

For each case 500 simulations have been performed. The effective permeability

(Ke ), power of averaging (u), proportion of shale (p), equal weighted P*(L),

XL), equal weighted ~“ (S ), and the weighted flS) have been retained

simulation. Some initial observations:

weighted

for each
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The power of averaging (w) i~ independent ofp in all cases.

The weighted ~ terms (ref. equations 6 and 8) are better correlated to WJthan the

equal weighted P* terms in all csses.

The relationship between w and XL ) does not depend on the block size or level of

discretization.

A good approximation of w may be made from regression using only XL). The

m~F~mOtG. iif Q) does not assist in predicting w except in extreme situations such as, . .

very high nS).

Figure 6 shows the median lines for predicting omega on the basis of ~L ) for all

five test cases. All five cases were combined and the corresponding median and quartile

lines are shown for prediction of w by XL ) on figure 6. On figure 7 a plot of the median

and quar( ~le iines for prediction of w by the equal weighted #(L ) is also shown. The

weighted XL ) may predict w more accurately than an unequal weighted ~“ (L ).

On figure 8 the median lines for prediction of w by ~S ) are shown. The near

horizontal nature of these lines and the scatter observed leaves little hope to use F(S) in

confidently predicting w. Figure 9 shows the median and quartile lines for all the

simulations combined. A multiple linear regression ha~ been used to estimate w from

both XL ) and ~S ). The inclusion of j$(S ) increases only marginally the correlation from

0.694 to 0.704.

From the tests that have been carried out it is apparent that the averaging power

may be predicted by XL ). The proportion of shale and the indicator correlation in the

plane perpendicular to flow have no effect on w except for large ~S ) or large p . High

~S ) would mean that XL) would be low. This is the justification for the cut off

~L ) ~ 0.17. Referring to figure 6 the following piecewise linear model w was adopted:

w = 6.o~L)- 1.00, j5(L)<0.17 (lo)
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u = 0.9 ~L ) .0.13, XL )>0.17

This relationship is for vertical flow and should not be extrapolated beyond

XL )=0.5. To test this regression model a cross valiciation of each run of the test cases

has been done. For each run the e5ective permeability has been estimated successively

by the model proposed above and a geometric average. The mean and variance of the

relative error of estimation will give a measure uf the bias and accuracy of each method,

see table 2. The relative error is defined as the true permeability minus the estimated

divided by the true permeability. The closer the mean of the relative error to zero the

less biased the estimator. The lower the variance of the reiative errors the more zccurate

the estimator.

Relative Error

Estimate mean variance minimum maximum

1. Geometric Average -0.0093 62,29 -209.3 0.87

2. Power Average knowing flL ) -0.0062 0.28 -12.7 o.g~

Table 2: Relative error statistics using a geometric
average and the model proposed in equation 10.

It comes as no surprise that the power averaging technique performs better than

the traditional geometric averaging. It is interesting to see that the geometric average is

unbiased although not accurate. The constant power of averaging that would give no

bias on the relative errors is w = -0.0125. This is close to the geometric average. The

improvement made by using the proposed prediction technique is appreciable.

Figure 10 shows how the Ke predicted by the model [ref. equation 10) compares to

the geometric average. The median Kc lines shown have been obtained from equation

10. For example: consider XL ) = 0.25 since 0.25>0.17 the second part of equation 10

would be used. An w of 0.095 may he calculated. h-swing the proportion of shale (O.1
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and 0.’25 considered on figure 10) one may use equation 1 to calculate the effective

permeability (531 rmf for p = 0.10 and 190 rnd for p = 0.25). This has been done for

XL) = 0.1 to 0.5. The interquartile range has been plotted in the same way u the

median lines. Two additional piecewise

lower quartiles of figure 7.

Figure 11 shows a cross plot of the

linear models have

true and estimated

been fit to the upper and

block effective permeability

considering a geometric averagfe and a power average knowing XL ). All the test csses

are shown. The bias and accuracy are better for the case of power averaging. However,

the XL j IS zever known exactly. Thl. would cause the prediction to be less accurate

than what is shown of figure llb.

Two important problems must now be

one would handle the more realistic c~e of a

addressed; that of inferring XL ), and how

multimodal distribution of permeability.

MULTIMODAL r’ERMEABILITY DISTRIBUTION

No experimental research has yet been carried out on this question. The technique

tentatively proposed here is a mere extension of the “solution” proposed for the bimodal

c=e.

The multimodal or continuous distribution of permeability must be split into n,

modes or classes. At the limit each permeability datum could represent a class. The

following generalization can then be made:

Ke =

with:

Ke = block effective permeability.

nc = number of modes or classes.

(11)

Pi = volume fraction of class i in the block.
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K~ = permeability (arithmetic average) of class i.

w = power of averaging.

A pre-defined cut off would be applied to the permeability field to obtain an

indicator network. From the calculation of a F(L ) an w could be estimated. Considering

the traditional alternative of using a geometric average, more accurate estimates can be

expected with reasonable application of this technique.

INFERENCE OF XL ) m HS )

Up until this point the inference of actual T values has not been discussed. The

basic requirement to infer the ~ terms is a variogram model. If experimental or actual ~

terms are to be determined more information is required.

The most accurate and reliable way to infer a variogram model is to have data at a

reasmable scale. The scale and spacing of the data would have to be le= than the range

of correlation. A variogram inferred from an outcrop in the central Sahara (ref.

Desbarats. 1986 quoted by Haldorsen et.al. 1985) was found to be fit by an exponential

model with a 15 m i.sotroplc range of correlation in the horizontal plane and ~ 1 m range

of correlation in the vertical direction.

Outcrop data would provide the most direct means to determine appropriate

variogram models. Close to some oil fields there may be outcropping of the same

sedimentary units. In northern Alberta (Canada) there is mining of oil sands which

provides direct access to the sedimentary structure of oil bearing strata which is similar

to that of nearby oil fields. It is known that some of these structures contain shale. In

any case, a catalogue of variograms for specific depositional environments may be

constructed. The appropriate variogram can then be selected on this basis if no other

information is available.

Well logs would provide a vertical variogram. On the basis of the gamma ray, S. P.,
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or more recently Iithology logging (P, ), the down hole shale indicator variogram could

be inferred. More precisely the XL ) in the vertical direction could be calculated. This

would provide a method to estimate the averaging process for vertical permeability from

well logging. Depending on the direction

directions may also be estimated.

CONCLUSIONS

of the drill hole the averaging process in other

AND DISCUSSIONS

A power averaging process is

heterogeneous reservoir. It is shown

direction may be used to predict the

assumed for the component perrneabilities in a

that a weighted indicator correlation in the flow

power of averaging. The indicator correlation may

be inferred in practice if detaued information such as appropriate well logs or outcrop

data are available. The indicator correlation may also be inferred from structural

hypotheses regarding the shale bodies and corresponding indicator variograms. The

method h= been developed for vertical flow. It is the author’s opinion that this

approach provides a tractable engineering approximation to the problem of estimating

the block effective permeabl::t: in shaly sandstone reservoirs,

The actual implementation of this method would have to be done in steps. A power

average with a constant power that is greater than zero for vertical flow is suggested as

the first step. As more research L being done, confidence in the prediction of a more

precise averaging power will lead to better estimates of effective permeability.
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AA>PEINDIX A: CALCULATION OF F

Given a 3-d network (ref. figure 1) filled in with a shale indicator realization (ref.

equation 2) the parameters XL ) and flS ) are to be calculated. It is enough to develop

the calculation of P for one coordinate direction only. For the plane perpendicular to

flow, the weighted sum of the 7S in the two orthogonal directions defining the plane

perpendicular to flow (ref. equation S), may be taken. The calculation of the XL ) in the

vertical (z ) direction will be shown.

XL) is defined as:

I=n, -1

-,
A UL t CCLU1 Itl is a vector in the z direction with a

(.4.1)

magnitude equal to an integer

multiple of d: ie (/ dZ ). The non-centered covariance for each lag (hl ) is given by:

‘=nyk=n8-l

A(hl)= ~z ,~Mn, ‘~n’ ‘~ ~ ~(zi,~~,z~) f(z:,!/J,Zk+/) (A.2)
i==l j==l k=l

The average correlogram for each lag distance is determined by centering the non-

centered covariance and normalizing to its ergodic limit. Each flhl ), f = O,..., nz -1, is



-21-

given by:

A(~)-p2
fl/l/)=————

.p(l-p)
,’

The weights Xl decrease linearly w;A increasing hl and become nought at 2 times

the variogram range. The number of grid b!ocks within this distance will be denoted

n2a. It is possible that the block is smaller than this distance, in which case the lesser

of rat and n2a is used in the following as nO

(A.4)

This calculation of j7(L ) may be made for any size block and the ~L ) will depend

only on the short scale structure. Possibly, if the block size is large, there may be a

iarger range nested structure. If this is the case the effect of this additional structure will

have to be evaluated.

If one considers a given variogram model and assumes an infinite discretization the

XL) in any direction may be calculated analytically as a function of the dimensionless

block length. This has been done for the exponential variogram model with no nugget

effect. The linear weighting makes the expression seem complicated. The derivation may

be simply made if one considers an infinite discretization and a continuous weighting

function, The following expression is found.

-’L—

~L )=(
az = a’e+)(A5)-—

2aL~@-;’ ‘ + ‘) - ‘2aL~ @~ - ‘L’ “ ‘ “
2 2
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Ke versus p - different powers of averaging
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Figure 1: Effective permeability for different
averaging powers.
.4 bimodal permeability distribution with Ksh =0.1
md and A’_ss = 1000 md is used. The arithmetic.
geometric. and harmonic averages are shown for
reference.
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Typical Discretized Reservoir 1310ck
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123000DX

BLOCI< SIZE:

Lx = dx*nx

Ly = ~Y*DY

LZ = dz”nz

Figure 2: TypIi al Discretiz:d Reservoir Flock.
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W versus Rho(l)-wsigh?ed
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W ver$ius Rho(e) Combined .simulotions
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