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ABSTRACT

The problem of estimating the effective vertical permeability in heterogeneous reservoirs
s addressed. A binary type permeability distribution with spatial autocorrelation is used
to model the sandstone and shale in a shaly sandstone reservoir. A power averaging
process for the component permeabilities s assumed. The averaging power %as been
related to parameters that may be inferred in practical circumstances. The twa proposed
factors may be inferred from an indicator variogram d:scribing the geometrical
relationship between the shales and the sandstone matriz. If detailed information is
avatlable at an appropriate reservoir block scale, more precise approximations of the
power of averaging may be made.

At this stage the proposed technique has been developed on simulated reservoirs. The
simulations have been done with rigid statistical control so that the anisotropic nature of
the shale heterogeneities may be captured. The actual block effective permeability (power
of averaging) of the reservoir blocks is determined through steady state, single phase flow
simulation. The reservotr unils contain no more than 30% shale by volume and the
emphasis has been on studying flow normal to the bedding plane. Improvements on thc
traditional geomelric average jfor wvertical permeability are smmediately evident.
KEYWORDS: Permeability, Power Averaging, Geostatistics

INTRODUCTION

The important problem of scale averaging is one that is beginning to receive more
attention. An "average” is a unique value that would describe a volume given a set of

measurements based on smaller volumes contained within the larger volume.

When considering a heterogeneous medium such as a sandstone/shale reservoir
many of the variables in question may be averaged arithmetically. The average porosity
of a volume is simply the arithmetic average of the porosities of ai. the smaller volumes
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that constitute it. In general the arithmetic averaging process applies to all variables

such as saturations or volume/weight percentages of vorious phuses.

There are other characteristics that are not additive. Absolute or relative
permeability and capillary pressure are in this category. The average of variables such
as these depend not only on the univariate distribution of the variable based on small
elementa! volumnes, but the average is dependent on the complete spa.ial and
multivariate distribution of vhe vanable. Taoz intrinsic meaning of these characteristics
~an be questioned at a very basic level. The meaning of permeability only becomes
evident when one considers an externally applied pressure drop to a fixed spatial volume
of rock/porous media. These variables describe fundamental characterisiics of a
rock /porous media when fluid is flowing in it. For this reason the problem of averaging

from one scale (i.e., core) to another (i.e., reservoir simulation block) is important.

If there is a significant proportion of shale in a sandstone reservoir the impact of
the low permeability shales may be appreciable. The shales will cause the effective
permeability to be less than the arithmetic average of the component sandstone and
shale permeabilities. The spatiai distribution and continuity of the shales will determine
how great this effect will be. If the shale bodies are continuous in the horizontal plane
the vertical permeability may se quite different from the arithmetic average. In practice,
the geometric average has been used for vertical permeability.. In this paper the actual
averaging process (averaging power) has been observed for simulated reservoir blocks. In
each simulated reservoir block characteristics of the shale bodies are correlated to the

averaging process observed.

The numerical simulation of an indicator grid and subsequen. calculation of the
associated effective permeability has been adapted from the procedure used by A.
Desbarats (1986). Throughout this paper the term “simulation” refers jointly to the

simulation of the indicator network and the flow simulation which provides the effective
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permeability of the heterogenous media.
POWER AVERAGING FOR BLOCK EFFECTIVE PERMEABILITY

The power averaging formulation or the general mixture rule may be written for a
two component shale sandstone system. If certain physically plausible conditionr. are met
(Korvin, 1981) the power averaging formulation is the only possible functional form of

the effective average of a composite material.

Soi "e formulae that make use of a power averaging approach include the Wyllie
"time-average equation” (W:llie et al, 1956), Meese and Walther’s "vugular carbonate
formula” (Meese and Walther, 1967), (Tegland, 1970, Mateker, 1971) for the sound speed
and effective attenuation in an alternating sequence of sa;nd shale layers, and (Beck,
1976; Rzhevsky and Novik, 1971; Schon, 1971, Woodside and Messner, 1961; <irant and
West, 1965; Pearce, et al, 1973; etc.) for the estimation of thermal and electric

conductivityof fluid filled sedimentary rocks.

The effective permeability of a block composed of shale and sandstone may be

written as a power average of the component permeabilities:

1
w

Ke = (p ‘Ksh* + (1-p )-Kss“’) for some real w, w30. (1)
Ke = Ksh? Kss'™?, w=0.
with:

Ke = Block Effective Permeability.

Ksh = Permeability of the shales.

Kss = Permeability of the sandstone.

p = Proportion (volume fraction) of shale.

w = Power of averaging.

The averaging power (w) is constrained by the upper and lower limits 1.0 and -1.0

corresponding to the arithmetic and harmonic averages respectively. The geometric
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~verage is found at w = 0. The power averaging model is not subject to any a prior:
hypothesis that can be validated or refuted. It is simply a model allowing the problem

of determining Ke to be shifted to the problem of determining w.

Figure 1 shows how the averaging power aflects the resulting effective permeability
for a bimodal distribution of p-rmeability (Ksh =0.1 md and Kss ==1000.0 md). The
traditional arichmetic, geometric, and harmonic averages are shown for reference. Al
possible effective permeability values may be expressed as a power average with the

averaging power betw=en -1.0 and 1.0.

It nas been shown that a power averaging approach is feasible (Journel et al., 1986)
and that the averaging power is approximately independent of the proportion of shale
(for p less than 0.5). The dependence of the averaging power on easily inferred or
measurable statistical properties of a heterogeneous media has been attempted in this
study. There are clear connections between measures of connectivity, such as indicator

correlation in the flow direction, and the power of averaging.
GEOSTATISTICAL APPROACH

The geostatistical approach to estimating the power of averaging will now be
discussed. An indicator random function is defined so that the geometry of the shale
heterogeneities may be described. For a three dimensional (3-d) grid an indicator is
defined at each location as numerically equal to 1 if the location is in shale and O if not.

The shale intrusions may be imagined as 3-d groupings of 1’s.

The geometrical relationship of two different populations is to be captared in a
limited number of summary statistics. The summary statistics should be e:>y to infer in
real situations. In practice one does not have the well defined indicator grid that is

available in numerical simulation. One may have well logs, core data, geophysical data,

and possibly production data. In this study the emphasis has not been on developing a




method to predict the block effective permeability given the exact .aale geometry. The
interest has centered on predicting the power of averaging with parameters that riay be
inferred in practical circumstances. There is no doubt that if one can draw or all the
information contained in an indicator network, the power of averaging could be inferred

more accurately.

Consider a reservoir block as part of a larger statistically stationary volume (i.e.,
the reservoir). As suggested above, the volume may be described by a numerical
indicator grid. The indicator variogram may be inferred from actual indicator data
and/or from soft geological description und interpretation. It i1s this variogram that
link.. the shale gseometry to the averaging power. Rather than the overall variogram

representative of the reservoir, a local model specific for each block would be preferred.

It is not the variogram directly that describes the ability of such a random field to
flow fluid. Some measures of connectivity that are related to the variogram and that are

specific for a particular block (i.e., statistically unique) are desired.

From this pont forward we will concern ourselves with regular three dimensional
grid networks that are described by an indicator network. Such a block is shown
schematically in figure 2(note: the large reservoir block shown belongs to a larger
reservoir not iilustrated). In all subsequent mathematical elaboration the block will be

de-cribed by finite sums of elemental sub-blocks.
GEOSTATISTICAL MODEL OF THE PERMEABILITY FIELD

The three dimensional reservoir blocks are made up of elemental sub-blocks that
are either 100% shale or 100% sandstone. The permeability of the elemental sub-blocks
may take one of two values, that of sandstone or that of shale. Consider the shale
indicator random function /(z) defined for each elemental sub-block centered at point

z:
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I{(z) =11 z is in shale
= 0 if z is in sandstone (2)

The complementary sandstone indicator random functior J(z ) may be defined:

A

J(1)=1—I(I) (3)
The indicator function /(z) has the following first and second order moments:

E {I(z)} = p = volume fraction of shale in the block
Var {I(z)} = C(0) = p(1-p)

Cov {I(2)I(z+h)} = C(h) = p(1-p) o(h)

(k)= C(0)- C(h)

with p(h) and ~(h) being respectively the correlogram and variogram of the random

function I(z).

Given a 3-d indicator field it is necessary to extract some simple and easily
predicted characteristics that would relate the 3-d configuration of shale to the ability of
the field to flow fluid (effective permeability). Two evident factors would be a measure of
spatial continuity along the flow lines and a measure of spatial continuity perpendicular
to flow. As the spatial continuity of the shales in the flow direction increases the power
of averaging wouid increase. Similariy. as the spatial continuity of the shales in the plane
perpendicular to flow increases, the power of averaging would decrease. A method will

now be proposed that determines two parameters that have the desired properties.

The two parameters proposed ( (L ) and p(S) ) may be calculated experimentally
given an indicator grid and a model for the variogram defining the larger stationary
volume. The variogram is required to provide a range of correlation in each of the
coordinate directions. Alternately these parameters may be calculated solely from the
variogram model if the only information available is an inferred variogram model. It will

be shown that these parameters may be used to predict the power cf averaging.

The spatial variance of /(z) along a length L representing the dimension of the

block in ore of the coordinate directions may be written. Consider L in the coordinate
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direction x (ref. Journel and Huijbrects (1978) pp 67):

1 tan, jmn,

NLL)y=— ¥ ¥ %l -1) (4)

Ny iml jm=l

The ergodic limit of this spatial variance is the variance of I(z) ie. p(1-p). For a
measure of the spatial continuity the influence of the proportion of shale should be
filtered. Standardizing ~,(L ,L) to its ergodic limit the following continuity factor can

be defined:

V1 (L »L )
p(1-p) '
Note that this is equivalent to the average correlogram for the flow length L (hence the

F(L)=1- ¢ [0,1) (5)
7 nctation). As the continuity of the shales in a particular direciion increases the ﬁ'(L)
will get closer to the upper limit (1.0), as the continuity of the shales in a direction
becomes very low, or the block becomes very large, 7'(L) will approach the lower limit
(0.0).

It is also desirable to have a measure of coatinuity that may be used for any size
block. In the work that is done here all the block dimensions are relative to the
variogram range. As the dimension of the block becomes large (ie. greater than the
variogram range) 7 (L) will asymptotically approach zero. The lack of correlation at

large distances will dominate the 5’ (L ) regardless of the short scale variogram structure.

What seems intuitively reasonable and is indeed the case, is that the correlation at
small distances would be more important than the correlation at icng distz.zces. So in a
situation where an experimental or actual measure of the spatial continuity is to be
calculated a better estimate of 7(L) would be weighted such that the short scale
structure has more influence. For each lag distance h; the average correlogram is defined

as p(h; ). Appendix A illustrates the calculation of (k) given an indicator network.

- A weighted sum of each p(h;) with appropriately chosen weights would have the




properties that are desired. A weighted sum of this form may be written:

l==n, -1 {mn, -1
AL)= 3 ~?lh), ¥ MN=1 (6)
{=0 =0

A 7(L ) equal to that given in equation 5 wc 1ld result if each )\; is set to L
"z

It is considered that after double the variogram range the block effective
permeability does not ciange. If we impose the condition that beyond two times the
variogram range all the weights are set to zero, and that the weighting function will

decrease linearly to zero at this point, the following weights may be assigned:

)\‘ =bl—b2h‘_ allh, <2a

a = variogram range )
l=n,-1
b,, by = constants chosen such that ) X\, =1
{=0

)\,=0, h[ > 2a

This system of weights is more justified than the unweighted average that is
implicitly assumed in equation 5. In actual network simulations it has been observed
that the correlations p(h;) at small lags h; are more influential than those at larger lags.
Also the weighted 7TL ) may be used to predict the power of averaging more precisely

than the unweighted AL ).

A measure of the spatial continuity of /(z) iu the plane perpendicular to flow may
ha aimilarly calculated The plane perpendicular to flow will be denoted S. If the flow is
vertical (z-direction) the x-y plane will be S. If horizontal flow (in the x-direction) is

being considered S will be the y-z plane.

In the numerical modelling of the fluid flow there is no flow in any diagonal

directions (except stepwise). For this reason the calculation of 5(S) is essentially a sum

of the 7 in the two directions defining S. If one was considering vertical flow (S| z.y):
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da~ny -1 ‘-ﬂ,'l..
AS)=0o T N Zh)+(-a) ¥ Nplhy ,with: (8)
=0 =0
lmn, -} {mn, -1,
2 N | = E X‘ = 1.0 ,a.nd:
=0 I=0
T I AL

The weights N ; and ;\, are determined in an identical fashion to )\; given in
equation 7. The expected variogram range in the x and y directions need not be the
same. The weight a is introduced to correct for unequal L; and L,. It is important to
note that if either L, or L, is greater than two times the variogram range they should
be reset to 2-a for the calculation of a. This is equivalent to calculating 7(S) by

summing the contributing A A;) for all lags A, in the z and y directions.

Up to this point the actual connection between Z(L ), /(S) and w has not been
discussed. The 7 terms may be calculated if a variogram model and a block size is
provided. This relat ,nship is discussed next. The connection between experimentally

calculated 7 terms and the averaging power is then discussed in detail.
DEVELOPMENT OF 7 FOR AN EXPONENTIAL VARIOGRAM

Given a variogram model and a block of fixed dimensions it is possible to calculate

what B(L) and 7(S) will be analytically. This has been done for the exponential

-3

variogram model with no nugget effect: y(h) =1 - ¢ , with practical range a.

Figure three shows how L) will change as a function of the dimensionless block
length. The analytical expressicn for (L ) as a function of the dimensionless block size is
given in appendix A. If the block cross section is square (with respect to an isotropic
variogram range) the B(L ) for the length of one side will give ®S). If this is not the
case one could read the 7 corresponding to the dimensionless block length in each

direction and ~or .ine the two arithmetically (consider the weigh* a given in equation 8).
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The 7 terms will decrease to around 0.276 as the size of the block exceeds two times the

variogram range.

TESTING AND IMPLEMENTATION

In the following sections the research steps and results will be outlined. The

standardized block model is as follows:

The dimensions of the simulated reservoir blocks have been expressed in terms of
the variogram range in the three coordinate directions. It has been assumed that there
is a finite range for v;(h ) and that it will isotropic in the horizontal plane. There will be
a geometric anisotropy with the vertical range less than the horizontal range. The
discretization is expressed as the aumber of points that describe the variogram range.
For example: if the variogram range in a particular direction is 15 m (ie. a; = 15 m),
and the block size L, is 30 m with sub-blocks each 3 m (d;). The block length given

will be 2-a, and the number of discretization points will be presented as 5.

A constant shale permeability (Ksh) of 0.1 md, and sandstone permeability (Kss)
of 1000 md has been used throughout. An exponential variogram model with a vertical
to horizontal anisotropy 1/15 has been considered for the variogram ~;(h):

(3
Yh)=1-¢ ° (9)

h' = \/h+ b} + (15-h,7)

hy, h,, h, = rectangular coordinates of the vector h.

The geometrical anisotropy of 1/15 implies that the range of correlation in the vertical }

direction is one fifteenth cf the horizontal range of correlation.

The study proceeded as follows:

1. A reservoir block filled in with a (0-1) network of elemental sub-blocks was
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simulated 4000 times with the volume proportion of shale varying from 2.5% to
32.5%. Each simulation yields an effective block vertical permeability. The
averaging power that would identify the block eflective permeability w~as then

calculated by numerical means knowing t! ~roportion of shale.

2.  For some of the actual grid networks used, the grid was piotted in a series of cross
sections. Knowing the power of averaging associated with each grid, a visual
inspection was made so that the reason for the differences in w cculd be explained.
All of the simulations considered for this particular exercise were at a constant

proportion of shale.

The corresponding p(L ) and 5(S) (equations 6 and 8) were calculated. Recall that

these parameters could be inferred in practical situations.

4. A detailed regression study directed toward the estimation of w from B(L ) and 7(S5)

was performed.

A large number of simulations were initially performed so that the dependence of w
on p, (L) and 7 (S) could be evaluated. Only the case of vertical flow was
considered. The block size was 0.8-a; by 0.8-a, by 1.5-a,, with a discretization of 5 by 5
by 10. The conjecture that w and p are approximately uacorrelated was found to be

valid. The correlation between w and p for the 4000 runs was found to be as 0.07.

The equal weighted 7 terms were retained in the simulation runs. As expected, a
positive correlation existed between w and ﬁ'(L) and a negative correlation existed
between w and 7 (S). However, a great deal of scatter was observed. Figures 4 and 5
illustrate this. Instead of plottiag a scattergram with thousands of points the median
and quartiles of w based on prediction within small classes of 7' are presented. The
scattergram of w versus ﬁ'(L) as well as the figure showing the median and quartiles is

included on figure 4. This allows one to compare the actual scatter to the measure of
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scatter indicated by the median and quartile lines. Presenting the results in this manner

is consistent with the ultimate objective of having parameters that will predict an w.

A poor correlation exists between w and the 7° terms. The correlation between w
and 7" (L ) is 0.46, and the correlation between w and 7°(S) is -0.21. Recall however that
the power of averaging for vertical flow is, in practice, taken as zero which corresponds
to the geometric average. From figures 4 and 5 the possibility of improving on this
traditional approach can be appreciated. This led to the next step where the actual
indicator grid was drawn to see if a relationship existed between w and the geometry of

the shale bodies that could be identified by visual inspection.

After inspection of the actual geometry of shale bodies a significant although not
surprising observation was made. The major factor contributing to the flow
performance of a heterogenous block is the fraction of the cross section perpendicular to
flow, for all sections, that has no shale obstacles. However, this fractional area is not a
parameter that would be predictable in an unaccessible hydrocarbon reservoir, thus its

study has not been pursued further.

Upon a detailed Jook at the p(k;) terms for various lag distances h; it was noticed
that w was more highly correlated to the p(h;) terms for small A;. It was also evident
that this correlation dropped off in a linear fashion to near zero between 1 and 2 times
the variogram range. The block effective permeability stabilizes if the length of the
block exceeds double the variogram range. On the basis of these observations the 7
terms defined in equations ¢ and 8 were proposed. Important considerations for

considering these 7 terms are:
- Their simplicity and the poss bility of estimating them in practice.

- They completely characterize the bivariate (two points) distribution of the shale

bodies.
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The equal weighted 7 and unequal weighted 7 were calculated for the grid networks
in this stage. The correlation between w and the weighted #(L) is 0.81, a substantial
improvement over the correlation between w and the unweighted 7° (L }=0.64. For ?(S)
both cases yielded a correlation of -0.2. In all runs subsequent to this, both sets of 7
terms have been calculated. It has been observed that the weighted P terms yield better

results in all cases,

The validation of this approach has been carried out for the case of vertical flow.
Various block sizes and degrees of discretization have been considered. In each set of test
runs the relationship between the power of averaging and the experimentally calculated
indicator correlation have been observed. The churacteristics of the five test cases

considered are given in table 1.

Five Test Cases Considered

(all distances are relative to the ranges of the variogram model (9))

Test Run Lx dx Ly dy Lz dz size
Base Case 0.8 7.3 0.8 7.5 1.5 6.7 6x6x10
1. Discretization II 0.8 6.3 0.8 6.3 1.5 6.7 5x5x10
2. Small Block 0.4 125 0.4 125 2.0 5.0 5x5x10
3. Large Block 2.0 2.5 2.0 2.5 2.0 5.0 5x5x10
4. Large Block 11 3.0 1.7 3.0 1.7 3.0 3.3 5%5x10

Table 1: Characteristics of the test cases considered.

For each case 500 simulations have been performed. The effective permeability
(Ke ), power of averaging (w), proportion of shale (p), equal weighted 7 (L), weighted
(L), equal weighted 7°(S), and the weighted 5(S) have been retained for each

simulation. Some initial observations:
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1. The power of averaging (w) is independent of p in all cases.

2. The weighted 7 terms (ref. equations 6 and 8) are better correlated to w than the

equal weighted 7’ terms in all cases.

3. The relationship between w and B(L ) does not depend on the block size or level of

discretization.

4. A good approximation of w may be made from regression using only B(L). The

noramater & Q) does not assist in predicting w except in extreme situations such as

very high B(S).

Figure 6 shows the median lines for predicting omega on the basis of F(L) for all
five test cases. All five cases were combined and the corresponding median and quartile
lines are shown for prediction of w by p(L ) on figure 6. On figure 7 a plot of the median
and quart’le lines for prediction of w by the equal weighted 7° (L) is also shown. The

weighted (L ) may predict w more accurately than an unequal weighted 7° (L ).

On figure 8 the median lines for prediction of w by 7(S) are shown. The near
horizontal nature of these lines and the scatter observed leaves little hope to use (S5 ) in
confidently predicting w. Figure 9 shows the median and quartile lines for all the
simulations combined. A multiple linear regression has been used to estimate w from
both (L ) and (S ). The inclusion of B(S) increases only marginally the ccrrelation from
0.694 to 0.704.

From the tests that have been carried out it is apparent that the averaging power
may be predicted by 7(L ). The proportion of shale and the indicator correlation in the
plane perpendicular to flow have no effect on w except for large %S ) or large p. High
7(S) would mean that 5(L) would be low. This is the justification for the cut off;

P(L) > 0.17. Referring to figure 6 the following piecewise linear model w was adopted:

w=607L)-100, FHL)<0.17 (10)
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w=0975L) -013, FL)>0.17

This relationship is for vertical flow and should not be extrapolated beyond
P(L )=0.5. To test this regression model a cross validation of each run of the test cases
has been done. For each run the effective permeability has been estimated successively
by the model proposed above and a geometric average. The mean and variance of the
relative error of estimation will give a measure of the bias and accuracy of each method,
see table 2. The relative error is defined as the true permeability minus the estimated
divided by the true permeability. The closer the mean of the relative error to zero the
less biased the estimator. The lower the variance of the reiative errors the more accurate

the estimator.

Relative Error

Estimate mean variance minimum maximum
1. Geometric Average -0.0093 62.29 -209.3 0.87
2. Power Average knowing p(L ) -0.0062 0.28 -12.7 0.92

Table 2: Relative error statistics using a geometric
average and the model proposed in equation 10.

It comes as no surprise that the power averaging technique performs better than
the traditional geometric averaging. It is interesting to see that the geometric average is
unbiased although not accurate. The constant power of averaging that would give no
bias on the relative errors is w = -0.0125. This is close to the geometric average. The

improvement made by using the proposed prediction technique is appreciable.

Figure 10 shows how the Ke predicted by the model (ref. equation 10) compares to
the geometric average. The median Ke lines shown have been obtained from equation
10. For example: consider (L ) = 0.25 since 0.25>0.17 the second part of equation 10

would be used. An w of 0.095 may ve calculated. Ki.ving the proportion of shale (0.1
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and 0.25 considered on figure 10) one may use equation 1 to calculate the effective
permeability (531 md for p = 0.10 and 190 md for p == 0.25). This has been done for
AL)=0.1 to 0.5. The interquartile range has been plotted in the same way as the
median lines. Two additional piecewise linear models have been fit to the upper and

lower quartiles of figure 7.

Figure 11 shows a cross plot of the true and estimated block effective permeability
considering a geometric averagfe and a power average knowing p(L ). All the test cases
are shown. The bias and accuracy are better for the case of power averaging. However,
the (L) 1s uever known exactly. Thi' would cause the prediction to be less accurate

than what is shown of figure 11b.

Two important problems must now be addressed; that of inferring 7(L ), and how

one would handle the more realistic case of a multimodal distribution of permeability.
MULTIMODAL ¢rERMEABILITY DISTRIBUTION

No experimental research has yet been carried out on this question. The technique
tentatively proposed here is a mere extension of the "solution” proposed for the bimodal

case.

The multimodal or continuous distribution of permeability must be split into n,
modes or classes. At the limit each permeability datum could represent a class. The

following generalization can then be made:

=1

. 1
1=n, -
Ke=| % p,--K.~~]“’ (11)
with:
Ke = block effective permeability.

n, = number of modes or classes.

p; = volume fraction of class ¢ in the block.
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K; = permeability (arithmetic average) of class 1.

w == power of averaging.

A pre-defined cut off would be applied to the permeability field to obtain an
indicator network. From the calculation of a (L ) an w could be estimated. Considering
the traditional alternative of using a geometric average, more accurate estimates can be

expected with reasonable application of this technique.
INFERENCE OF 3(L) AND 7S)

Up until this point the inference of actual 7 values has not been discussed. The
basic requirement to infer the 7 terms is a variogram model. If experimental or actual 7

terms are to be determined more information is required.

The most accurate and reliable way to infer a variogram model is to have data at a
reasonable scale. The scale and spacing of the data would have to be less than the range
of correlatiqn. A variogram inferred from an outcrop in the central Sahara (ref.
Desbarats, 1986 quoted by Haldorsen et.al. 1985) was found to be fit by an exponential
model with 2 15 m isotropic range of correlation in the horizontal plane and a 1 m range

of correlation in the vertical direction.

Outcrop data would provide the most direct means to determine appropriate
variogram models. Close to some oil fields there may be outcroppings of the same
sedimentary units. In northern Alberta (Canada) there is mining of oil sands which
provides direct access to the sedimentary structure of oil bearing strata which is similar
to that of nearby oil fields. It is known that some of these structures contain shale. In
any case, a catalogue of variograms for specific depositional environments may be
constructed. The appropriate variogram can then be selected on this basis if no other

information is available.

Well logs would provide a vertical variogram. On the basis of the gamma ray, S.P,,




S8 SPE 15991

or more recently lithology logging (P, ), the down hole shale indicator variogram could
be inferred. More precisely the (L ) in the vertical direction could be calculated. This
would provide a method to estimate the averaging process for vertical permeability from
well logging. Depending on the direction of the drill hole the averaging process in other

directions may also be estimated.
CONCLUSIONS AND DISCUSSIONS

A power averaging process is assumed for the component permeabilities in a
heterogeneous reservoir. It .s shown that a weighted indicator correlation in the flow
direction may be used to predict the power of averaging. The indicator correlation may
be inferred in practice if detaied information such as appropriate well logs or outcrop
data are available. The indicator correlation may also be inferred from structural
hypotheses regarding the shale bodies and corresponding indicator variograms. The
method has been developed for vertical flow. It is the author’s opinion that this
.approach provides a tractable engineering approximation to the problem of estimating

the block effective permeabi.itv in shaly sandstone reservoirs.

The actual implementation of this method would have to be done in steps. A power
average with a constant power that is greater than zero for vertical flow is suggested as
the first step. As more research .; being done, confidence in the prediction of a more

precise averaging power will lead to better estimates of effective permeability.
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AVPPENDIX A: CALCULATION OF 7

Given a 3-d network (ref. figure 1) filled in with a shale indicator realization (ref.
equation 2) the parameters 5{L ) and p(S) are to be calculated. It is enough to develop
the calculation of 7 for one coordinate direction only. For the plane perpendicular to
flow, the weighted sum of the ?’s in the two orthogonal directions defining the plane
nerpendicular to dow (ref. equaiion 8), may be taken. The calculation of the 5(L ) in the

vertical (z ) direction will be shown.

P(L ) is defined as:

{=n, -1

AL)= % N7k (A1)

1 =0
The vetul /iy i3 a vector in the z direction with a magnitude equal to an integer
multiple of d, ie (! -d,). The non-centered covariance for each lag (h;) is given by:
1 i=n, f=nk=n,-
Abh)=——3% ¥ ¥ =y a) 1(zi.y;.2.) (A.2)
g Ny "Ny ] ja=l k=!

The average correlogram for each lag distance is determined by centering the non-

centered covariance and normalizing to its ergodic limit. Each (&), | = 0,..,n,-1, is
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given by:

_AM)-p?
.p(l-p)

The weights \; decrease linearly with increasing A, and become nought at 2 times

Plhy) (AL
the variogram range. The number of grid blocks within this distance will be denoted
no,. It is possible that the block is smal.er than this distance, in which case the lesser

of n, and n,, is used in the following as n,:

h +1
M= (A4)
= (1.0 - L)
i=0 N2,

This caleulation of p(L ) may be made for any size block and the 5(L ) will depend
only on the short scale structure. Possibly, if the block size is large, there may be a
iarger range nested structure. If this is the case the effect of this additional structure will

have to be evaluated.

If one considers a given variogram model and assumes an infinite discretization the
(L) in any direction may be calculated analytically as a function of the dimensionless
block length. This has been done for the exponential variogram model with no nugget
effect. The linear weighting makes the expression seem complicated. The derivation may
be simply made if one considers an infinite discretization and a continuous weighting

function. The following expression is found.
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Ke versus p - different powers of averaging
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Figure 1: Effective permeability for different
averaging powers.

A bimodal permeability distribution with Ksh = 0.1
md and Ass = 1000 md is used. The arithmetic,
geometric. and harmonic averages are shown for
reference.
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Typical Discretized Reservoir Block
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Figure 2: Typu al Discreiized Reservoir Plock
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Rho(L) versus biock length (L/c) - exponential var i ogram
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Omego versus Rho(lL)-squa! weighted Omego versus Rho(lL)-equal weightad
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Figure 4: Power of Averaging (w) versus 7 (L)

The scattergram and the corresponding plot of the
median. first quartile. and third quartile lines. for the
initial test runs, correspondmg to the prediction of w
from small classes of 7 (L ).
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Omega versus Rho(S)-equal weighted
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¥ versus Rho(!) Bose Run ond Tests
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Figure 8: Power of averaging (w) versus %L ).
Median lines for the four test runs and the base case
are shown.
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¥ versus Rhéﬁu-unweigmed ¥ versus Rho!(l)-weighted
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Figure 7: Power of Averaging (w) versus 3 (L) and
L)

All the test cases of table 1 have been combined to
determnine the median and quartiles of w based on
small classes of (L ). The 2500 effective w’s have been
grouped per classes of either 3 (L) or B(L). The
resulting class medians for w were all positive in one
case, and negative for Jow P(L ) classes in the other

case.
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V versus Rhols) Base Run ond Tests
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Figure 8: Power of averaging (w) versus &S ).
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¥ versus Rho(e) Combined Simuigtions
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Ke versus Rho(1) - for p=0.1 Ke versus Rho(l) - for p=0.25
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Figure 10: Estimating effective permeability from

indicator statistics.

The averaging power is estimated frem (L), and the

corresponding effective permeabilitv is deduced. For a

given volume proportion of shale, the figures give the
. distribution (median and interquartile range) of the

resulting effective permeability estimates.
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Actua! Xe versus Geometric Rverage Ke Actual Ke versus Power RAverage Ke
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Figure 11: Actual Ke versus averaged Ke
(Geometric average and Power average)

Note that the geometric average underestimates Ke
for all ranges of estimated Ke. The power average is

unbiased for all ranges of estimated Ke .




