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Abstract

To provide accurate predictions of flow performance, the
numerical model of permeability used by flow simulators must
be consistent with all available geological and engineering data.
The available data includes core permeability measurements,
relevant permeability statistics (particularly, histograms,
measures of spatial variability, and correlation with secondary
variables such as porosity), and well test-derived permeability
measurements. This paper documents an algorithm to generate
3-D permeability models that honor this variety of data. The=-- ....
algorithm, referred to as annealing cosimhlation (ACS),
generates stochastic permeability models using the numerical
optimization algorithm known as simulated annealing. The
.-nl;fi.f;fin nf cimulatwl annealinp tn re~erv~i~ modeling is not@HJJJ--L~~~Ju. . .... .. .. . ~....--..... a -_ -
new. The variety of information considered, however, and the
practical example presented in this paper will be of interest to
reservoir modelers.

Introduction

Geostatistical techniques are increasingly being used to generate
the 3-D numerical models of rosity and permeability required
for reservoir simulation. 1‘2*P The quality of a geostatistical
model is directly related to how well it honors the available
geological and engineering data. This paper documents the
application of simulated annealing to the generation of 3-D
permeability models. The originality of this paper is in the
details of application that allow the practical and simultaneous
integration of many sources of data.

One promise of geostatistics is a range of equiprobable models
that may be used to quantify the uncertainty in the reservoir
model. At times, there appears to be a wealth of data (core, well
logs, seismic, production tests, and so on). Even in these ideal
situations, however, the data are inadequate to provide a unique
reservoir model; there is always uncertainty in the assignment
of reservoir properties at unsampled locations.

To account for important geological variations, porosity and
permeability must be modeled within homogeneous “rock types”
that art= h~ct=dQH~ ~~~i~na]!i~holq#facies model constructed.l, La. -w “--

within a detailed sequence (or chrono-) stratigraphic
framework.4 There is a place for stochastic techniques in the
construction of rock type models and stratigraphic frameworks,
1--------- A-.-..-..:-:.+:,- :..l*a9-nra*;,- rwmcrhwtac rlnminnte ~~~Snuwmb, UGLCi Illllllsuu mmpu.lk pw”””l”- . . . . . . . . . . .

aspect of reservoir description.

Uncertainty in the stratigraphic framework and geological
concept are difficult to quantify. In many cases, however, these
aspects of uncertain y are the most consequential. This is one
reason why the integration of all available information is
considered more important than the generation of multiple
realizations and the subsequent quantification of uncertainty.

As stated above, porosity and permeability must be modeled
within homogeneous rock types. The modeling, however, can
not be performed independently within each rock type. Firstly,
there may be spatial correlation in the porosity and permeability
across rock type boundaries. Secondly, engineering-type data
(production history, surveillance, and well test measurements)
and geophysical-type data (seismic attributes) inform volumes
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of the reservoir that most likely cross stratigraphic and rock-
type boundaries.5

Another consideration is that porosity and permeability data
vdues are typically representative of core sized samples. In

practice, core values are assigned to grid node locations and
then considered representative of the entire cell containing that

That 1s, we assign vahie~ I+caGilLaL1,- “, -v. - “1node. “ . .,.- ~..-..+.-,ti.r~fif f.ara or we!!

km .;ma .o~dPC to crf+olopjcal ~odeling cells usually no smallerIus ala” oul..~.-. .- ~--.-~--—-
than 1 by 50 by 50 feet. Proper accounting for this “missing
scale” is an area for research.6

The problem addressed in this paper is the assignment of
permeability (K) values to a 3-D grid network consisting of N
nodes where the porosity ($) and the rock-type (RT) have

c_ .1 IIm,G&! ‘t ,.~mC; C~C nf thx~ three.aiready been Usigiied. The IIWI U“,,cl.- K!“. “.-”.. ..----
values at each grid node: (RTi, $i, Ki), i=1,...,N. The N grid
nodes typically define a regular 3-D network of 105- 107 nodes
within the stratigraphic framework.

The rock type (RT) is modeled first. The RT variable is related
to the lithology or facies and may also account for the
depositional environment and diagenetic history. The precise
definition of appropriate rock types depends on the specific
problem being addressed. All geological populations with
“significantly” different characteristics should be kept separate.
Aspects of the RT model could be deterministic (e.g., the
position of different stratigraphic sequences) and other aspects
could be stochastic (e.g., positions of sandstone and shale within
the sequences). Techniques for RT modeling will not be
discussed here.

The porosity ($) model is built such that it honors the existing
RT model. Techniques for $ modeling will not be discussed
here, however, the Gaussian, indicator, and annealing methods
discussed below could also be applied to @modeling.7

Permeability, in general, is more difficult than porosity to model
and yet, has a greater influence on fluid flow behavior.
Moreover, permeability is directionally dependent and should,
theoretically, be modeled as a tensor. Current practice,
however, is to model the primary directions (horizontal KH,
and vertical, Kv) and neglect other aspects of the permeability
tensor. When necessary, the directional permeabilities are
modeled sequentially; the direction (KH or Kv) with the most
data is modeled first. Proper accounting for the tensorial aspect
of permeability is an area for research.6

The Problem

The problem is to assign permeability values (say K=KH) after
the rock type (RT) and porosity (@)have been modeled. That is,
we need to assign Ki given RTi and $i, i=l,.. .,N where N is
some large number of grid node locations. The quality of the
numerical model, (RTi, @i,Ki). i=1,...,N, depends on how well

it honors the available information or “data”. For permeability
modeling, the data include:

. local core measurements

. well test-derived measurements

. a histogram or probability distribution of K within each RT

● a cross plot or bivariate distribution of $ and K within each RT

● measures of the K-spatial variability within each RT

These data should be honored to the extent that they are known
there is always some intrinsic uncertainty due to measuremen
error, limits of the interpretive model, data paucity, and so on.

Some Conventional Solutions

The simplest approach to assign the N permeability values is t
develop a regression-type relationship between porosity an
permeability for each rock type, for example,

log Ki=a(RTi) $i + b(RTi)v i= 1,...,N. ...(1

where a(RT) and b(RT,Jare parameters determined by the cros
plot of log K and $ for each rock type (RT). The regression
type relation could take more complicated forms (quadratic
cubic, conditional average of K within a moving window of $
and could, at well locations, account for additional information
available from well logs such as shalyness or indications of roc
quality (FZI/RQI).8

These regression-type approaches are inadequate for a numbe
of reasons: 1) low and high permeability values tend to b
smoothed out, 2) the final permeability values do not show th
correct measure of K-spatial variability, and 3) the uncertaint
in the permeability estimates is not accounted for.

There are a number of geostatistical techniques that could b
used for modeling permeability. Gaussian-related algorithm
and soft indicator kriging (the Markov Bayes model) are th
most common.9 Some limitations of these methods will b
mentioned to motivate consideration of the annealin
cosimulation procedure.

Gaussian techniques are the most straightforward for generatin
geostatistical realizations. In the case of permeability, th
normal scores transform of porosity and permeability ar
assumed to follow a bivariate Gaussian distribution; th
required parameters to implement the Gaussian approac
include the linear correlation between the porosity an
permeability transforms, the permeability variogram, th
porosity variogram, and the cross porosity-permeability
variogram. Further assumptions can be made to remove th
requirement for the porosity variogram and the cross porosity
permeability variogram. The advantage of Gaussian-relate
algorithms is unparalleled simplicity. There are a number
disadvantages: 1) it is not straightforward to honor data
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no flexibility to account for complex $-K cross plots, and 3)
there is no flexibility to account for complex measures of K-
spatial variability (e.g., indicator variograms).

Problems with the soft indicator approach include greater
mathematical complexity, a diftlculty to handle data of different
volume supports, and rather severe screening or Markov
hypotheses.

The motivation for the annealing cosimulation (ACS) technique
is to provide an algorithm with greater flexibility to integrate all
of the available information.

The Annealing Cosirnulation (ACS) Technique

Applying the numerical technique known as “simulated
annealing” to geostatistical simulation is relatively
new. IO,II, 12,13 me name Annealing Ccxinudatim (ACS) is

derived from: 1) through common usage simulated annealing
has been shortened to “annealing”, and 2) stochastic simulation
of one attribute conditioned to others may be referred to as
“cosimulation” (compare with cokriging). Interest in the
annealing methodology is based on its ability to honor a wide
variety of input data.

The technique of simulated annealing is based on an analogy
with the physical process of annealing and is typically applied
to global optimization problems. Annealing is the process by
which a material undergoes extended heating and is slowly
cooled. Thermal vibrations permit a reordering of the
atoms/molecules to a highly ordered lattice, i.e., a low energy
state. In the context of 3-D numerical modeling, the annealing
process may be simulated by the following steps:

1.

2.

3.

4.

Create an initial 3-D numerical model (analogous to the
initial alloy in true annealing) by assigning a permeability
value to each grid node at random from the population
distribution.

Define an energy or objective function (analogous to the
Gibbs free energy in true annealing) as a measure of
difference between desired features and those of the
realization, e.g., the objective function could include the
squared difference between the variogram of the realization
and a model variogram derived from core data.

Perturb the model (analogous to the thermal vibrations in
true annealing) by visiting a random location in the 3-D
numerical model and assigning a new permeability value.
The new value is a random drawing from the conditional
distribution of permeability given the collocated porosity
value.

Accept the perturbation (thermal vibration) if the objective
function is decreased; reject it if the energy has increased.

$. ~antimup the rw=rflmhati~n““,,.1.. w . ..” y-. . . . “------ p~~~du~~ Untii ~ iQw ‘ner~y State

is achieved. Low energy states correspond to plausible 3-D
numerical models of the reservoir.

In true simulated annealing, perturbations that increase the
energy are accepted with a certain probability (the Boltzmann
probability distribution). The parameter of the Boltzmann
distribution (related to the temperature of true annealing) is
then lowered according to some schedule. For the purposes of
cosimulation, we have found that simply accepting all good
changes and rejecting all bad changes works well.

In general, the objective function is made up of the weighted

sum of NCcomponents:

O=gwc”oc. ...(2)

where O is the total objective function, WCand 0= are weights

and component objective functions respectively. Each
component is designed to account for a source of data. The
weights are calculated such that all components of the objective
function are lowered to zero at the end of the annealing process.
Details of how to calculate these weights are given in Deutsch
and Cockerham. 13

Components in the objective function are measures of mismatch
between a reference property and the corresponding property of
the candidate model. Any quantified geological or engineering
measurement could be considered, e.g., variograms, seismic
data, or well test data. From a practical point of view, though,
it is necessary that each property component be easily updated
after a perturbation; annealing techniques depend on perhaps
millions of perturbations to arrive at an acceptable
model. 12’13J14’15 All of the geological and engineering data
considered below meet this “easy updating” criterion.

Referring back to “The Problem” statement, we will now discuss
how the ACS approach to permeability modeling honors the
differeni i~pe~ d ~ttii~bi~ d~iii.

Local Core and Well Test Measurements

The known core permeability measurements are honored by
assigning them to the nearest grid nties and never perturbing
them in the subsequent annealing procedure.

Well test data may be honored by adding a component to the
objective function; this is beyond the scope of the present paper,
see Deutsch, 1992 for details. 11

Prnh~hiIifv llictrihmfinn nf Pcwmenhi~ifv. . “.,.. ”U..J -..,.. . . . . . . . w. . s. . .. —-. ..J

In the case of modeling permeability, the histogram or
probability distribution of permeability is typically honored
within each rock type by the constraint to honor the bivariate
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distribution of permeability with porosity. Kltemativeiy, We
_-.:..l -- -.. -..l.+:.,.m A:eAh ,t; mm f,, mr+nn (r+ 9 w~~hinco-uid ~UIh]uGl ~ LAI1llUICJL1 VG UIW lukL”I, 1--- ,-.

~ach KKk tvne discretized at a number of thresholds:.,=. —

F(ki, RT,) = Prob{K< ki, KYRTr }, i=o....nk. r=lt...*nRT .-(3)

The reference cdf values could be obtained from proportions of
core data less than each threshold; the values from the model
could easily be calculated by proportions of nodal values less
than the corresponding threshold. The component objective
function is written:

O,=? ~ [Fti..m (k,, RT)-F_, (k,, RK)Y ...(4)

In general, this is unnecessary if the full bivariate relationship
with porosity enters the objective function.

Cross Plot of $ and K

The relationship between $ and K must be quantified and then a
component of the total objective function can be constructed.

One summary of the $- K relationship is the linear correlation

coefficient. A reference correlation coefficient preference(RT)

could be established for each rock type. The deviation from the
modei couici then ‘bemeasured by the smn of sqiiamd dHferences
between the reference correlation coefficients and those of the
model:

Op=n~ [p@_, (R~)–PW~.,(Rr)12 ...(5)
r

In many cases, it is desirable to capture more details from the
cross plot. A discretized bivariate probability distribution may
be used for this purpose. There are a number of ways to
discretize a bivariate distribution. Figure 1 illustrates our
preferred approach; the $/K classes are established by defining
porosity thresholds based on an equal number of data per class.
The permeability thresholds (within each porosity class) are
then established on the basis of an equal number of data per
class.

The series of conditional cumulative distribution functions are
denoted:

F(kiJ,n ~j RTr) = Prob{ K< kiJ,r , ~j,r<~ <~j+l,r ), ...(6)

i = 1,...nk ,J = 0,..., n@, r=l,...,nRT

Where ~ and n+ are the number of permeability and porosity

thresholds respectively, n,, is the number of rock types, $}

j= O,...,nOare the porosity thresholds ($.=O), and ki,j,n i = ],...nk
are the permeability thresholds within porosity class j for rock
type r, The component objective function is written:

...(7

Considering conditional cumulative distributions within classes
rather than the full bivariate histogram or bivariate cumulative
distributions, removes any bias that may be present in the cor
or reference data; there are often fewer low
porosity/permeability pairs than high porosity/permeability
pairs. A second practical concern arises when there are too few
calibration data. The solution is to simply consider th
correlation coeftlcient or fit a smooth bivariate model to th
distribution. This is an area of research.

Perturbing a data value changes a number of cdf values within
conditional distribution that may be easily recalculated.

Measures of K-Spatial Variability

The final type of data considered in this paper relate to th
spatial arrangement of the permeability or K values. The flow
performance of reservoirs is strongly dependent on the spatia
distribution of permeability. A random or homogeneous mode

‘f petllleabi]i~y --.:11
L,...,. . :r.,. ”m*l.,

Will llavG
A; ff.a.mnt flnwSigiillJ~allLly Ulllwlwll. ..u..

characteristics than a model showing spatial correlation.

T_ _._-. -.:-.:-- .~- ..,.<,----- := ~n-mmmlv IIQA ac 9 rpeac.lwe
in ~~w~tiilhlk% LUG v~l lU&lCW 10 W,lllllU.~.J w“-= .-.. - --------

of spatial correlation. A variogram model y(h), inferred from

the available core data and appropriate geological analog data
is a reservoir, attribute, and rock-type specific measure o
spatial correlation for all distance lags, h. The variogram
directionally dependent, that is, the verticai variograrn typicaii
has a much shorter range of correlation (say 5-50 feet) than th
horizontal (range of 100-10000 feet). The horizontal variogram
may also show directional anisotropy.

The permeability model should honor the variogram withi
each rock type. An objective function of the following form ca
be considered to achieve this:

~, “f ~ [Yr,,,,,nc,(h,t~T)–Ymd., (h,,~~)l’ ...(
r

Where n, is the number of variogram lags being considered (50

5t)()), y~k~, (h,, R~) is the reference variogram model (not to b

confused with the variogram from the permeability model) f

]ag h, and rock type R~, and ~~,, (h,, R~ ) is the variogram

from the permeability model.

In general, by constraining the permeability model to the $-
cross plot and the reference variogram (both by-rock-type) the
is adequate control on the spatial distribution of permeability
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There are a number of instances, however, when a greater
degree of control on the permeability distribution is required:

1,

2.

3.

specific levels of permeability (high or low) have
significantly better or poorer spatial correlation than the
permeability values taken all together,
there is a complex spatial relationship between porosity and
permeability that is not adequately captured by the cross plot
alone, or
there is spatial correlation between the permeability values
in one rock type with those in another rock type.

The first case may be handled by indicator variograms and the
second and third situations may be handled by cross
variograms.

An indicator transform i(u; kc) of the .permeahi!ityvalue k(u)

at location u is set to 1 if k(u)< kc, and to O if not. If the high

permeabilities within a specific rock type r have a greater range
of correlation than the median or low permeabilities, a high

indicator threshold kc would be considered. A variogram

calculated using the indicator-transformed data,

7,,,,,,,”,, (h,, R~ ), would show greater correlation than the

overall permeabilityy variogram ym~mw,(h,, R~ ). In many cases,

the available well data are inadequate to allow the direct
calculation and modeling of indicator variograms; a reasonable
estimate of the indicator variogram, consistent with the
geological interpretation, is better than having the spatial
correlation depend only on an average variogram.

An objective function of the following form could be considered
to account for an indicator variogram:

01.7=‘! ~ [Yhj.r,.cc(%~w )– ‘Y/nM,(f,/(h,, R~)]2 ...(9)
r

Where n, is the number of variogram lags being considered (50-

500), ~,r,,,,,nC,(h,, R~ ) is the reference indicator variogram

model for lag h, and rock type R~, and ~,~til (h,, R~ ) is the

indicator variogram of the permeability model.

A number of indicator variograms could be considered
simultaneously; for example, multiple indicator thresholds and
different indicator variograms for different rock types could be
used.

Cross-variograms are measures of spatial correlation between
two different variables, e.g., porosity with permeability,
permeability in rock type 1 with permeability in rock type 2,
and so on. Occasionally, there arise situations when
consideration of these measures is important to achieve a

realistic permeability model. Once again, it is straightforward
to account for cross variograms in annealing cosimulation.

,(,.K)=3 [Yo
,o-omfrrmc, @~R~)-Y,o.mmoA, (h,, RT)]2 ...(10)

1

Where n, is the number of variogram lags,

~,+~,~f,r,n,, (h,,R~) is the reference cross porosity ($)-

permeabiiity (K) variogram modei for iag ~, and rock type R~,

and ~($-~)~tic,(h,, Rx ) is the cross variogram determined

from the porosity and permeability models.

An Exarnpie

An illustrative example will now be presented from a shallow
marine sandstone oil bearing formation. The univariate
distribution of porosity and permeability for this example are
displayed in Figure 2. Note the logarithmic scale for
permeability and the bimodal aspect of the distributions; the
bimodal aspect is also observable on the $/K cross plot (see
Figure 1). A rock-type differentiation at a porosity threshold of
10% was considered unnecessary due to a gradational change
between the two populations and the fact that direct modeling of
$ and K preserves the distinction of the rock >10% porosity and
that c1 O%porosity.

For clarity, a single chrono-stratigraphic sequence will be
shown; the actual model was 3-D and consisted of 20 layers.
The intent here is to illustrate the flexibility and applicability of
the ACS algorithm and not to present a full case study. A
Gaussian simulation (sgsim from GSLIB)9 was used to mdei

porosity. Figure 3 shows a cross section through the porosity
model and the corresponding vertical and horizontal variogram.

Figures 4,5, and 6 show three alternative permeability models.

The linear regression model (see equation 1) shown in Figure 4
is a smooth log-linear resealing of the porosity model. Note
that the spatial structure of the resulting permeabilities is close
to that of the porosities. The variogram does not reach the
expected sill value since the variance has been reduced with the
linear transform. The overall character of the permeability
values appears too smooth and no assessment of uncertainty is
possible.

Honoring the @/Kcross plot only, see Figure 5, with no explicit
control on the spatial correlation of the permeability values
results in the correct variance. There is some spatial continuity
borrowed from the porosity model, however, the variogram does
not match the target or reference variogram since no explicit
variogram control was added.
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function to control the spatial distribution of permeability is
seen on Figure 6. This illustration is typical of the
“conventional” application of ACS, i.e., with direct control on
the @/Kcross plot and the K variogram.

A total of 40 lag direction vectors were considered in the ACS
run for Figure 6. The iag vectors with the iowest reference
variogram value are chosen. This implies that few lags (only
the first) were chosen from the vertical direction and many lags
were chosen from the horizontal direction. The variogram plot
to the right in Figure 6 shows an excellent reproduction of the
horizontal variogram and perhaps a poorer reproduction of the
vertical variogram (except for the first lag). The correlation
with porosity causes this vertical continuity to be imparted to
the permeability values. Adding more lags to the ACS run
could ensure that the reference variogram model is honored
--..- . . ..--. .--1... ●L:.. .. s-.. ,. A.. .-:AZA.ZA ,m. . ..aecanc.n-r
II WIG pIGVISGIy, UIIS was LUIIm IUGIGU UIUIWGmaI y.

Figure 7 shows @/Kcross plots of the 2-D K values shown on
m.-. .--” !...A L ....*l. ●L- -.--.-..:.. . ..,.1 ..-. -47 C:-., -a 2
rlgulcs 4, 5, au u WIUI LIIC puIusILy vaum UI rlgulc J.

TL .
1 llG

linear regression was correctly applied (the cross plot reflects
the linear transform) and both ACS models reproduce the
reference @/Kcross plot.

To compare these models, each should be entered in a flow
simulator. Then, the predicted reservoir performance may be
compared. This was not done. We did, however, calculate the
effective permeability of the three 2-D sections shown on
Figures 4,5, and 6:

~ff=p; ~e ~ff=tJ ~e

Horizontal Vertical
Permeability Permeability

Linear Regression 34 md 1.7 md

P.-c” Dlmt n-l.,Gluaa 5 lWL Ullly
2n rn,-i n<l -.42UI1lU u.>1 Anlu

Cross Plot and Varioeram 47 md 0.42 md

Note that there are significant differences in the effective
horizontal and vertical permeability values. The predicted flow
performance is expected to be significantly different.

Conclusions

An algorithm, based on simulated annealing, has been
presented for constructing geostatistical models of permeability.
The annealing cosimulation (ACS) algorithm provides great
flexibility to integrate a variety of geological and engineering
information.

The 3-D permeability model is constructed after the porosity has
been modeled within homogeneous rock types. The modeling,
however, can not be performed independently within each rock

+.,-. fh,m.m -.., k .R. A.1 Z.---1 .*:C.” . A- .W.s-nc;t., ““A
LJ~, L1l&l& lllC!J W ~~CALICU UU1l QICILIU1l :fi Lll% ~lWOILy tL1lU

permeability across rock type boundaries and many data inform
volumes that cross stratigraphic and rock-type boundaries.

We have presented the ACS technique and details of how to
account for local permeability measurements, a permeability
histogram, the bivariate distribution between porosity and
-...--.. L:l:.. . - --—-.. L: I:... ..,...: --— —— : - A:-...-.. . .--:----—.
pcllllcdulllly, a p Illcwully Villlugl iilll, Illulcalul ViiIIugIilIIls,

and cross variograms. It would be possible to account for other
types of data such as well test data and other production
information.

Nomenclature

variogram function

lag separation vector
indicator transform
indicator transform data value
absolute permeability
number of grid nodes in a numerical model
. ...- La.-C .A..l. +.,..-”llUIIIW1U1 Imk Lypcs

number of porosity thresholds

number of permeability thresholds

porosity
rock type (usually based on lithology or facies)
correlation coefficient
location coordinates vector
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Figure 1:

GEOSTATISTICAL

Porosity

(ACS) SPE 28413

Cross plot of permeability versus porosity with core data shown as gray dots and class definition for the bivariate
distribution shown by the black lines, Five porosit y and five permeability cutoffs were used.
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Figure 2: Histogram of the core porosity and core permeability data.
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Figure 3: Cross section through the porosity model with the corresponding vertical and horizontal variograms.
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Figure 4: Cross section through the permeability model based on a linear transform of the porosity model.
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Figure 5: Cross section through the permeability model based on a reproduction of the porosity-permeability cross plot.

Y

Vertical DMance, ft
Q A g

2.08
12 Is x)

.

1.81

1.2: . “
.

.
0.81 .

0 2bo 4&)”’”’’’””—600 800
Horizontal Distance, fi

Figure 6: Cross section through the permeability model based on a reproduction of the porosity-permeability cross plot and the
permeability variogram.
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Figure 7: Reproduction of the porosity-permeability cross plot (compare with core data shown on Figure 1).
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