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ABSTRACT

This paper presents the results of an integrated reservoir
managementstudy of a large carbonatereservoir. Geostatistical
and scaleaveraging tools were used to develop(ietaikxigeologic
models and a simulation window model. The geoatatistical
simulation techniques generated realistic models of Iithology,
porosity, and permeability. The publicdomain GSLIB
sofhvare, with some custom programs for data manipulation
and interactivevariogram modeling, allowedfor the timely and
efficient constmction of a multi-million cell geological model.
A two-stepapproach to permeabilitymodelingwas successfd; it
allowed the straightforward integration of core and well test
data and provided improved geologic models for use in history
matching in flow simulations. Because of the large number of
cells in the geologic model, the porosity and permeability
models were scaled up for use in the simulation model. A
calibratedpower-lawaverageapproach to scale-upwas found to
workwell.

The geostatistical tools used in this study are applicable to both
—,,,—,-,- A:—-—s---l—--- .- ---- —.-:--
sumcmsuc ana caroomue reservoms. Tiie two-step ilpprOSdi tci

permeability prediction is applicable whenever a significant
differenceexists betweencore-basedpermeabilitymeasurements
and production-scale permeability. The authors suggest that
such an integrated approach to reservoir management is wideiy
applicableand yields good results.

Referencesandillustrationsat endofpaper

This paper presents an overview of the methodology and
techniquesused to develop the geologic and simulation models
for the area being studied.

INTRODUCTION

The area of study is part of a major Arabian carbonatereservoir.
Oil production is from wells developed on a one-kilometer
spacing, with pressure support provided by flank water
injection. In the last 20 years, significant production and
injection has occurred and the area has displayed two different
typesof water movement. Much of the area has a ftirly uniform
areal movement of the flood fron~ however, part of the study
area has been characterized by rapid and erratic water
movementuncharacteristic of most of the field. The objective
of this study was to use current ge0statistical*s2and scale-
averaging techniques to build geologic and simulation models
that integrate all of the available data in order to improve the
understanding of the reservoir and to identi@possible causesof
the anomalouswater movement.
A... .s --..--— -- ----: --- ---—— -c —---.-:- A--- --tl-d:--
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has provided a wide variety of good quality data. To analyze
and model the daa the Geostatistical Software Library
(GSLIBY, a publicdomain softwarepackage, was used. This
packageprovides a wide range of statistical and modding toois
that enable users to integrate different types of data (core, log
well tesg etc.) into a comprehensive3-D modeling system. The
lithology was modeled with a sequential indicator simulation
(S1S)algorithm. The porositywas modeled,by lithology,with a
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sequential Gaussian simulation (SGS) algorithm. The
permeabilitywas modeledwith a two-step approach, the matrix
permeability was modeled with a Markov-Bayes simulation
aigorithnL whereas an additional component of permeability
due to ‘iarge-scale”features (vugs, t%xtures, etc.) was modeled
with a sequentialGaussiansimulation (SGS)algorithm.

Figure 1 shows a schematic of the process used to develop the
models. Detailed geologic models of lithology, porosity, and
permeability were created using 250-meter areal gridding.
Power-lawaveraging was used to scaie the geologicmodels for
use in a flow simulator. Severalflow simulations were made to
evaluatethe geologic models and developpossible explanations
for the cause of the unusual water movement observed in the
studyarea. Each step in this processis discussedin this paper.

POROSITY AND LITHOLOGY MODELING

Porosity data from log analysis were used to generate porosity
medels. Figure 2 shows a porosity trace from a typical well in
the field. The data were separated into seventeenlayers which
were carelatable throughout the study area and had a
characteristic quality such as high or low porosity, or highly
dolomitic in nature. Log and core data were collected and
screened. A cell declusteringalgorithm (the deelus program in
GSLIB)was used to calculatedeclusteringweights, and the data
were tran40rmed into normal scores (the nseore program in
GSLIB).

Limestone, dolomite, and anhydrite data were obtained from
core, as well as estimates made from density/neutron logs and
sonic.hesistivity tools. Horizontal and vertical indicator
variograms were developed for each layer. For the major
lithologies, spatiai analysis led us to conclude that well control
tim one-kilometerwell spacing was dense enough to allow use
of indicator simulation. Lithology models were constructed
using a sequential indicator simulation algorithm (the sisim
program in GSLJB).

For layers which contained significant dolomite, separate
porosity models were built by lithology to preserve the
appropriate porosity distributions. Porosity models were
generated using a sequential Gaussian simulation algorithm
(the sgsim program in GSLI13). The separate porosity models
were merged based on the presence of limestone or dolomite
from the lithologymodels.

For lithology,Figure 3 shows examples of indicator variograms
(limestone/dolomite) for layer 5, a heterogeneous iayer
containing a significant amount of dolomite. The dashed line
representsthe experimentalvariogram dam, the solid line is the
variogram model. In the horizontal direction, an anisotropy
was observed and modeled with a primary direction of 30
degrees east of north and a minimum direction of 120 degrees

east of north. For porosity,Figures 4 and 5 show horizontaland
verticalvariogramsfor limestoneand dolomite in layer 5.

Fiw- 6 showsan example of a simuiated lithology distribution
for layer 5, Figure 7 shows an example of a simulated porosity
distributionfor layer 5.

TWO-STEP APPROACH FOR PERMEABILITY

MODELING

Field observations have shown that core data alone are
inadequate to explain all of the permeability that exists in this
field. Pressure buildup tests show values. of permeability-
thickness several times that predicted by core anaiysis. (Also,
flowmeter surveys in the area commoniy show intervals of
highly-confined flow.) Furthermore, trends evident in field
performancedata (water arrivals, water cuts, and salinity) show
flood front movement at a rate much f~er than anticipated in
parts of the field, indicating that permeabilities are much
greater than those measured in core analysis. Consistent with
these field observations,previous simulation studies of this area
have shown that permeabilities must be increased several times
above the core values to obtain an acceptable match of field
performancehistory.

Several factors appear to contribute to this observed
discrepancy. The factors include:

(1)

(2)

(3)

Core recove~ is poor in the presence of fractures cr large
vugs, and in an interval of very high porosity at the top of
the reservoir.

Core samples selected for core analysis tend to be fiiirly
uniform to avoid problems in testing. As a resul~ the
permeabiiitiesmeasured in routine core analysis tend to be
low.

Fractures and fracturing associated with faults may be a
major contributor to the permeability and observed field
performance.

Definition of Terms

To build more effkctivegeologic models, a methodology was
developed to incorporate both the well test data and core
permeability measurements into the construction of geologic
models of permeability. The procedure used for this process is
outlined in the two columns on the right of Figure 1. Total
reservoir permeabilitywas divided into two components which
we have termed “matrix” permeability and ‘large-scale”
permeability. Each component was modeled separately using
geostatistical techniques. At the end of the process, the two
componentswere remmbined to give total permeability.

“Matrix”permeability is defined as the permeability developed
from values measured in core analysis. “Large-scale”
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permeability represents the additional permeability, above the
values- measured in core, reflecting the obsexved field
nerftmnance. The sum of these two components represents the=.. --_..—----
total permeability, and is referred to as “resemoir-scale”
permeability.

For tier clarification the reservoir-scalepermeabilitycan be
expressed as the sum of the matrix (core) values plus the
additionalpermeability(huge-scale)as follows:

k~u = kh +k,q ..........................................(1)
scale sale

Rearrangingequation 1 gives:

kklmge = ~ti - ke ..........................................(2)
scale sale

Assumingthat the “reservoir-scale”permeabilityis measuredby
P~ buildup and falloff tests, it can be replacedby a “well
test” term:

k ...............................................(3)

Advantages of Two-Component Approach

There are several advantages to modeling the permeability in
two components:

(1)

(2)

(3)

It acknowledges that the permeabilities measured in well
tests are significantlyhigher than core values for this field.
Improved geologic models can be developed by
incorporating these data “up-front” in the building of the
geologicalmodels.

“Large-scale”f-tures and trends measured in well tests
can be identifkd and modeledseparatelyfrom coredata.

BY separating these components during the geostatistical
modeling process, this approach preserves the integrity of
both the core data and the extra permeability measured in
field tests and seen in the field performance.

MATRIX PERMEABILITY

Core porosities and permeabilities were used to develop the
matrix permeability models using Markov+tayes simulation
(the mbsim program in GSLIB). Core data were available for
27 wells, which represents 15% of the total wells in the study
area. Becauseof the limited sample size (relative to log data),
geologic and statistical criteria were used to group core data.
Distinct crossplot groups were obtained by merging data from
1..,-W?9 ●A11 *#mffi- -.,- 1 .xW’l Ant. +nm Im.rm.c 1 ‘1 *A 17 *n
iaywla A tu . 1 Lu .Uia.l &“qJ 1, e.,u -La ..”.., *a, w*. .* .“ . r .“

form group 2 (see Figure 2 for layers). Each of these major
groups was also separatedby limestone and dolomite making a
total of four porosity/permeability crossplot groups. Matrix

permeability models were buil~ by lithology, for each layer.
‘l’he final matrix permeability models were developed by
merging the separate models together using the litholo~
models.

Markov-Bayes Algorithm

The Markov-Bayes(mbsim) approach was chosen for modeling
matrix permeability because it builds models with spatial
continuity through the use of the variogram while still honoring
the bivariate relationship between porosity and permeability
(i.e., the crossplot). The traditional approach of developing a
linear transform for the porosity/permeabilitydata does not
capturethe variability in the bivariate relationship and results in
smoothing of high and low permeabilityvalues. In addition to
core measurementsat well locations, mbsim also allows use of
additional data for conditioning the models.4 For this study,the
porosity models were incorporated as additional data to build
spatial continuity that is closely related to the porosity model
and honors the variabilityof the crossplot.

Each crossplot was calibrated for input to mbsim using a
GSLIButility program called mbcalib. The general conceptof
.>. -.-12 L—.:-_ ----- 4.. — --- L- J--A A-4 ..:.I. i.- ..:.4 -c l?:”..-
ule Gdnurducm pmwixuuc uul uc ucsu Imu WUII LUG au U1 rigmc

8, a crossplot for group 1 limestone. Bivariate statistics are
printed above the plot. (A linear transform is provided for
reference but is not used for modeling matrix permeability.)
The crossplot has been divided into 8 porosity classes and 15
permeability classes. Permeability class frequencies
(percentage)for each porosity class are printed in the corner of
each porosity/permeabilityclass. The number of porosity and
permeability classes were selected to provide adequate
representation of the crossplot to the extent that adding more
classes does not affixt the outcome of the simulation. The
mbcalib program calculates factors to weight the porosity
model relative to the variograrn model for predicting
permeability. Fur&her itiormation on the Markov-Bayes
procedureis contained in References3 and 4.

Variogram Modeling

An interactive modeling program was used to develop
variogram models to match the experimental &ta.
Experimental variograms from core permeability data revealed
goodvertical continuity however,the limited sample size made
it difficult to develop variogram models for horizontal
continuity. Experimental horizontal variograms were analyzed
for 20 different directions at 15 degree increment however,
erratic behavior was observed in all layers and variogram
modelscould not be fit to the experimental&ta.

In the absenceof sufficientexperimental evidenceof horizontal
continuity, porosity variograrns were scaled to build
permeability variogram models that “borrow” horizontal
continuity from the porosity model while preswing the vertical
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4 INTEGRATED RESERVOIR MODELLING OF A MAJOR ARABIAN CARBONATE RESERVOIR SPE 29869

continuity observed in core data. Firs4 we matched vertical
continuity obsewed in each layer as closely as possible by
reducing the range parameters for each porosity variogram.
Gur analysis showed that the vertical variogram ranges were
approximately one-half the ranges of porosity for equivalent
samples. Therefore,this factor was used to calculate ranges for
the horizontal permeability data relative to the equivalent
porosity data. The resulting permeability variograms are
similar to the porosity variograms but the range of continuity,
both verticallyand horizontally, is 50?? lower. Figure 9 shows
examnles nf the ~~~jc~ ~-1~ hQr&..nt~! ~_riQfzrams ~ f~~. . —..~. - ..- --- ~.—.—

matrix permeabilityin layer 5.

TWOmati.x nermeahilitvmodelswerecamstructedfor each layer~-----___–---,-..–—-.–
using the separatelimestone and dolomite porosity/permeability
crossplot. The final matrix permeabilitymodel was generated
by combining the limestone and dolomite models using the
geostatisticalmodelof lithologydevelopedearlier.

LARGE-SCALE PERMEABILITY

We have defined “large-scale”permeability as all additional
permeability in the reswvoir which has not been measured in
coredata. Assuming that the well tests measure the sum of the
matrix and large-scale components, the large-scale component
can be calculated by subtracting the core-based matrix values
from the well test permeability. To accomplish this, foot-by-
fmt values of well test permeabilitywere calculatedby merging
well test data with open-hole flowmeter, and allocating the
well test permeability-thickness according to percent flow as
indicated by the flowmeter survey. The foot-by-fbotvalues of
large-scalepermeability were then calculated as the difference
of well test permeability minus the values of matrix
-—..l.:l:kr A’%. -.+4” -—..I.AI; *AC. . . . . . .U+-a+d 4%.-
plalllwullmy . ( 1 llG Il~UIA ~1111-U1llUGS WGJG GAU -Vb- IIUE1l

the geostatisticalmodel of matrix permeabilitydescribedearlier
for the 250-metercell in which the well lies.)

The flowmeter surveys were selected as the best method to
distribute the well test values of permeability-thickness. For
this study, we have assumed that the flowmetersurveysprovide
an acceptable representation of the formation away fkom the
well, and not just near-wellbore anomalies. While flowmeter
surveys have drawbacks, our view is that they still provide a
good first approximation of the reservoir permeability
distribution.

In general, the total reservoir-scalepermeability, as estimated
from well tests and flovvmeters,is greater than the matrix
permeability for this field. However, if the value of matrix
permeability was greater than the well test/flowmeter
permeability,the value of the large-scalepermeabilitywould be
negative. When this occurr@ the value was reset to zero for
the purposm of this study. The geostatisticalprograms are able
to handle zero values in the modeling process. When the final

reservoir-scale permeability model is construct the zero
values of large-scale permeability are filled in with matrix
values.

Ne@ the large-scale permeabilities were analyzed and
variograms developed for each layer. Geologic models of the
large-scale permeability were generated using a sequential
Gaussiansimulation algorithm (the sgsim program in GSLIB).

Data Analysis and Variogram Modeling

Prior to development of variograms, the large-scale., .:,
pmneabllmes were anaiyzed. Figure itl S-hewsa histogram and
probability plot of large-scale permeabilities for layer 5 on a
linear scale. Figure 11 shows the same data on a logarithmic

scale.

Despite the fact that the data are displayed on a logarithmic
scale, the plots show that the distribution is skewedtowardslow
values.” A fm wv large values of permeabilityoccur around 5
to 7.5 darcies. These large values occur in limited intervals in a
fw wells and probablyrepresent fractures. Our current view is
that these may represent a separate population of fractures
which are poorly sampled. The data indicate that wells in the
field only occasionally intersect such large fractures, or only
some of the fiwtures are contributing to flow into the wellbore.
These values were included in the large-scale modeling
however, the inclusion of these values does not have a
significanteffkcton the resulting modelsbecausethey represent
a small fraction of the total population. While they appear to
representa population that is poorlysampl@ they will probably
have a significant impact on fluid flow in much of the area, and
therefore should be modeled either as a separate population
using geostatistic.altechniques (and a larger sample of data) or
“. . x..-. RA.mm-.nn- (c- ~c..““a@tk”..f-. 17,.tl,i.1= Wnrlm
a a UL*EGLG paltinluanawlvla \- uu~wsuu.ls *VS . “.-w . . “s- ,.

The two-component approach for modeling of permeability
highlights some interesting f=tures in the data. To illustrate,
Figure 12 showsa histogram and probabilityplot of matrix and
large-scalepermeabilitiesfor layer 2. Figure 13 showsa similar
plot for layer 5. Layer 2 is predominantly limestone, while
layer 5 has a mix of limestone and dolomite. As a resul~ the
distributions for layers 2 and 5 are markedlydiflkrent. In layer
5, the matrix and large-scale permeability distributions appear
as two distinct populations indicating the highly variable
permeabilityin this predominatelydolomite layer. The matrix
(core-measured)values tend to be low, while the large-scale
values reflect the existenceof vugs and fkwtures not sampled in
the coredata.

●Becausethedisplay is ona logarithmicscale,theizro values(matrix
greaterthanwelltest)arenotdisplayedin thecumulativeprobability.
Forlayer5 thismpresents21percentofteetotal.
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After analyzing the data, variograms were developedfor each
layer to describe the spatial distribution and continuity of the
large-scale permeability. Experimental variograms were
generated in fifteen degree increments to try and iden@
directionality in the large-scale permeabilities. If fimlts or
bands of fklures ran in an east-westor north-south direction,
then wells would Ml in areas of highs and lows and
directionality would be seen. However, a detailed analysis of
directionalvariograms from each layer did not show any clearly
defined directionality. While areas of more intense fracturing
may exix they may be poorly sampled because of the current
relatively large spacing of wells. Because of the lack of any
clearlydefineddirectionality,isotropicvariograrnswereused.

Figure 14 showsthe horizontal and vertical variogram for large
scale permeability in layer 5. The vertical variogram shows
goodcontinuity for the large-scalepermeabilities. Note that the
experimental data points do not increase to a sill of one, even
though this is normal scores data. The most probable
explanationfor the occurrenceof this lower than expectedsill is
the relatively uniform profile of the large-scale permeability.
Recall that the flowmeter data were used to generate
permeability profiles fkom well test data. However, the
flowmeter data are fairly coarse and data are chosen over
intervals which may be 5 or 10 fmt in length. As a resul~ the
calculation of the variogram would tend to average in a large
quantity of values which are essentially the same, thus keeping
the averagefrom reaching a sill of one as normally expectedin
normal scores data. Since the sgsim program is based on
normal scores, the final variogram models were scaled to a
value of one.

The horizontal variogram for layer 5 is shown at the bottom of
Figure 14. While there is a good fit of the variogram model in
this layer, there is actually a large amount of uncertainty in the
range of the large-scalevariograms. We recommendthat future
modeling work include testing of the sensitivity of simulation
model results based on different ranges of large-scale
Variograms. For example, the ranges of the large-scale
variogramscouldbe halved or doubld to see the effkcton water
movementin the simulation model.

c!%m!t.t;di..a C:m..l.t;nn d t .—Gal. D.-.ah2l:t.V--,m-.m.- Um-um..mvuv. -m 6.-US.N. - -mxu...mJ..J

The permeability realizations were generated using the
sequential Gaussian simulation (sgsim) program in GSLIB.
The input data were the individual well strings of large-scale
permeability and the large-scale variograms. The program
honors the primary variable as local conditioning data (values
of permeability at well locations), the conditional cumulative
distribution function (the univariate distribution of the
permeability data), and the variograms

. (spatialdistribution and continuity).
of the permeability

SCALE-UP PROCEDURE

Having generated models of matrix and large-scale
permeability, the two models were added together to obtain a
geologic model of total reservoir-scalepermeability as defined
by Equation 1. However,this geologicmodel contained fiu too
many cells (4,069,970)and was not f-ible for use in reservoir
simulation with current computer resources. The power-law
averaging technique4was used to scale-up the geologic model
for flow simulation in a modelwith 79,764 cells.

Power-lawaveragingcan be definedby the followingequation

[1
~hi~ikio “o

k-= i
~hi,i

........................................(4)

i

where ki is the ith permeability value, hi is the ifh tddckness,
and ai is the factional area of cell i.

The power-lawparameter, co,was calibratedby running a small,
one-phase flow simulator on randomly selected areas of the
geologicmodel. First, 300 elementsof the geologicmodelwere
selected randomly. Secon4 eff’ve permeabilities and
corresponding0’s for the x, y and z directions were computed
for each element using a single-phase flow simulator. Finally,
the 3000 values for the vertical direction and the 600 covalues
for the horizontal directions (x and y) were averagedto a single
value of o for developmentof permeability arrays for the flow
simulation. The calculated values of o were distributed
ediy about a mean of about 0.6 with a sbndard
deviation of about 0.1. This distribution was considered
sufficientlynarrow to justify the use of the power-lawaveraging
technique.

The average value of o for horizontal flow was 0.6. For
comparison, the classical averaging methods can be considered
as special cases of power-law averaging: 0=1 corresponds to
arithmetic averaging, 0=0 correspondsto geometric averaging
and 0=-1 corresponds to harmotic averaging. The average
va!ue for vertical flow was -0.6: higher than the traditional
value for a harmonic average.

VERTICAL PERMEABILITY

Vertical permeability was calculated from reservoir-scale
horizontal permeabilityprior to scale-up. Crossplot of vertical
and horizontal pennealility versus porosity were compared
using moving-windowstatistics. The results showed that the
distribution of vertical and horizontal permeabilities wem
similar for each Porosim class, and that the average vertical
permeability was-consi~ently slightly less than ti-e average

315



6 INTEGRATED RESERVOIR MODELUNG OF A MAJOR ARABJAN CARBONATE RESERVOIR SPE 29869

horizontal permeability. Based on these results, the following
equation was used to calculate vertical permeability prior to
scale-up:

LOG (kV)= 0.9 * LOO(kh) ......................................(5)

where kv is vertical perme.abliity and kh is hori~ntd
permeability.

FLOW SIMULATION RESULTS

A flow simulation model was constructed and four histov
match runs were completed. The purpose of the runs was to
evaluate the usefulness of the geostatistical techniques and the
two-component approach to modeling permeability. In
additioz analysis of the history matches provided an
opportunity to investigate theories which may explain the
unusual water movement in the area and differencesobserved
betweenmodel and field performance.

Seventeenvertical layers were used along with a 68 by 69 areal
grid giving a total of 79,764 cells. The simulation was run for
53 years with most of the production and injection occurring in
the last 20 years.

Figure 15 shows the horizontal permeability for layer 5. The
studyarea is outlined in the center of the model and represents
the scaled-up array of total reservoir-scale permeabilities
developed in this study. For comparison, it is smmmded by
-_.amkil A:.. km mmrmA~,.1., h; +rv.mnteh.at+ wwii+tal nf tlwplluuwmmlwo 11”,,, c1paw. .“-., alma“., -, LUS%WS.-‘..—. “. u.”

field. The new permeability array fits in well with the
surrounding area from the previous model and supports the
validity of the new permeability model and the two-component
approachby which it was developed.

hdtial Flow Simulation

A flowsimulation (referredto as HMl) was run for the 53 years
of history. Results are shown in Figures 16 and 17. In Figure
16, the top frame compares the average model and field
pressure versus time for producers in the study area. The
bottom &me shows a plot comparing the average model and
field water cut.

Figure 17 shows an areal comparison of the model and field
flood front. The shaded areas illustrate the calculated flood
fiord advance witt time. T& SOiititirte ~p=sefi’h tk
intepeted flood front at 1985 based on first water arrivals.
(The model floodfront has been definedas a 0.1 percent change
in model water saturation within a column of blocks. In other
words, the flood front is considered to have arrived at a model
l-hi-- w +h. ..*+.. e.h.m+;n. h.. :mr.rD?ld by Q.] per~~~Lwuum u U& Wawl WU#Lcu.l”a. ,- ,an”n—

sincethe beginning of history.)

In summary,the initial flow simulation showed:

(1) The calculated pressures were somewhat low, but matched
the general trends of the field data.

(2) Calculated water advance was relatively uniform aredly.
* a resul~ the modelcomparedwell with the field in areas
of relativelyuniform water advance, such as the southeast
and western parts of the mode~ however, in the area of
rapid water advance in the middle of the study area, the
modeldid not match field petiormance.

Basedon the results of the initial flow simulation, we conciuded
that in areas of relatively uniform water advance, the
geostatisticaltechniques provided a good initial match of areal
and vertical water movement. Since this “relativelyuniform”
type behavior is typical of most of the field outside the study
~ the techniques used in this study will be useful for
building modelsof other areas of the field.

Additional Flow Simulation Results

In the next stage of the study, we made three additional flow
simulations to explore possible explanations for the
discrepancies obsemwd between the model and field
performancein the am of rapid water advance.

After a reviewof all the availabledata, we developeda working
hypothesis that the failure of the initial model to match the
rapid water advance was due to fiwture development in this
area. Several recent borehole-imaging logs indicate the
ms~ nf vertical frna~re~ ~0 weii~ ~D~hj~ arr_.t- —----- -. . . . ..— ..==.

This theory was tested in three additional simulations.
Fracturing was simulated by increasing permeabilitiesin layers
which were predominately dolomite and in thi~ low-porosity
layers, based on the assumption that the rocks in these layers
weremost subjectto fracturing.

Figure 18 shows a comparison of the pressure and water cut
comparisons for the first and last flow simulations (HM1 and
HM4). Calculatedpressures and water cuts are higher in HM4
due to the increasesin permeabilityand changes in permeability
stratifkation which were made to increase the movement of
water into the field.

Figure 19 shows an areal comparison of the model and field
flood front at selected times. Compared with HMl (Figure 17)
“:-:& -.& :.”...-, . . . ...+ de hi ~itchillg the fkidWglulluuu IllkpluvGsllGllLs Were ma

obsend flood front in the middle of the study area.

The results of the additional flow simulations provide support
for the hypothesis that the geostatistical models did not
adequatelycapturethe effectsof the vertical fractures. A review
of the data showed that fmctums were not dtxpmiysampifxi:- AL.A.-. A?..4---
m uc sumy M twu reascm. m: ..-+:-1 ...AI. An -Ar Irs’tt VGIubiu wGns w IM

intersect a representativenumber of vertical fkturea and their
impact on fluid flow is not adequately represented. Secm@ in
the area of rapid water advance, the number of open-hole
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flowmeter were limited. As a result, much of the well test data
in this area were not used in the modelingprocess.

SUGGESTIONS FOR FUTURE WORK

While the geostatistical techniques were successfidin modeling
the areas of relativelytiorm floodfront movement,the lack of
adequate sampling of fractures is needed for improvements in
the reservoirdescription. Further analysisof flowmetersmveys,
additional borehole-imaging logs, and horizontal wells can
provide more data on the existence of vertical fractures. In
addition, information from seismic surveys would provide
usefid information on the locations of possible fiiults and
associated high fmcture densities. With this additional data,
geostatistical techniques could be used to incorporate fractures
into the geologicmodels. Alternatively,the data maybe used as
guidance for modeling of faults and fractures as discrete
phenomena.

We also suggest that use of multidisciplinary teams for similar
studies provides an effixtive approach for integrating all the
data “up-front”in the constructionof geologicmodels.

Finally, the impact of dMerent ranges for the “large-scale”
permeability variograms shouid be investigated. There is
considerableuncertainty in the ranges for permeability,and the
effixt of differentranges on simulation results shouldbe tested.

CONCLUSIONS

Overall, the two-step approach for madeling permeability
worked well in this project and should be applicable to
situations where a significant difference exists between core-_–=-----
basedpermeabilitymeasurementsand larger-scalepermeability.
It allows the straightforward integration of core and well test
data and simplifies history matching by providing better
geologic models of permeability. It can also provide a better
understanding of the data because each component is analyzed
independently, and separate spatial “trends” caused by
depositional or postdepositional processes can be identified.
Furthermore,by modeling the components separately,diilerent
spatial “trends” in the matrix and large-scale components are
preservedin the final geologicmodels.

Geostatistics provides a scientifically has@ methodical
approach for developing resexvoir characterizations within a
consistent fkanwwork. The publicdomain GSLIB sotlware
package, along with some custom programs for data
manipulation and interactive variogram modeling allowed for
the timely and efficient construction of the geological models.
The techniques also allowed integration of a wide range of
geologicand field performancedata into a comprehensive3-D
—.s.1:-. -A-—
momxmg sysLGm.

Initial flow simulations showed that the geostatistical
techniques (as used in this study) worked best in the axeasof
“more uniform” water advance. Since much of the field has
experienceda similar type flood tint advance, these techniques
can be succe@dly applied in the development of future
geologicmodels.

In areas of rapid water advance, the reservoir description from
the initial geostatistical models did a poor job of simulating
field performance. Our view is that the most likely cause of the
rapid water advance is the existence of vertical fractures (and
possibly faults) and these were not adequately sampled in the
data used for modeling this area. Seismic surveys, additional
borehole-imaging logs, and horizontal wells can provide more
data on the existence of vertical fractures, and geostatistical
techniques can be used to incmporate fractures into i%ture
geologicmodels.

NOMENCLATURE
a = fractionalarea of cell
Y= variogram function
h . cell thickness
k . absolutepermeability
m = power-lawparameter
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