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ABSTRACT

This paper presents the results of an integrated reservoir
management study of a large carbonate reservoir. Geostatistical
and scaie averaging toois were used to deveiop detaiied geoiogic
models and a simulation window model. The geostatistical
simulation techniques generated realistic models of lithology,
porosity, and permeability. ~ The public-domain GSLIB
software, with some custom programs for data manipulation
and interactive variogram modeling, allowed for the timely and
efficient construction of a multi-million cell geological model.
A two-step approach to permeability modeling was successful; it
allowed the straightforward integration of core and well test
data and provided improved geologic models for use in history
matching in flow simulations. Because of the large number of
cells in the geologic model, the porosity and permeability
models were scaled up for use in the simulation model. A
calibrated power-law average approach to scale-up was found to
work well.

The geostatistical tools used in this study are applicable to both
siliciclastic and carbonaie reservoirs. The two-siep approach io
permeability prediction is applicable whenever a significant
difference exists between core-based permeability measurements
and -production-scale permeability. The authors suggest that
such an integrated approach to reservoir management is widely
applicable and yields good results.

References and illustrations at end of paper
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This paper presents an overview of the methodology and
techniques used to develop the geologic and simulation models
for the area being studied.

INTRODUCTION

The area of study is part of a major Arabian carbonate reservoir.
Oil production is from wells developed on a one-kilometer
spacing, with pressure support provided by flank water
injection. In the last 20 years, significant production and
injection has occurred and the area has displayed two different
types of water movement. Much of the area has a fairly uniform
areal movement of the flood front; however, part of the study
area has been characterized by rapid and erratic water
movement uncharacteristic of most of the field. The objective
of this study was to use current geostatisticall2 and scale-
averaging techniques to build geologic and simulation models
that integrate all of the available data in order to improve the
understanding of the reservoir and to identify possible causes of
the anomalous water movement.
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UVEr in€ years, an Ongoing prograii O1 reservoir gaia collection
has provided a wide variety of good quality data. To analyze
and model the data, the Geostatistical Software Library
(GSLIB)3, a public-domain software package, was used. This
package provides a wide range of statisticai and modeling toois
that enable users to integrate different types of data (core, log,
well test, etc.) into a comprehensive 3-D modeling system. The
lithology was modeled with a sequential indicator simulation
(SIS) algorithm. The porosity was modeled, by lithology, with a
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sequential Gaussian simulation (SGS) algorithm. The
permeability was modeled with a two-step approach; the matrix
permeability was modeled with a Markov-Bayes simulation
algorithm, whereas an additional component of permeability
due to "iarge-scale” features (vugs, fractures, etc.) was modeled
with a sequential Gaussian simulation (SGS) algorithm.

Figure 1 shows a schematic of the process used to develop the
models. Detailed geologic models of lithology, porosity, and
permeability were created using 250-meter areal gridding.
Power-law averaging was used to scale the geologic models for
use in a flow simulator. Several flow simulations were made to
evaluate the geologic models and develop possible explanations
for the cause of the unusual water movement observed in the
study area. Each step in this process is discussed in this paper.

POROSITY AND LITHOLOGY MODELING

Porosity data from log analysis were used to generate porosity
models. Figure 2 shows a porosity trace fiom a typical well in
the field. The data were separated into seventeen layers which
were correlatable throughout the study area and had a
characteristic quality such as high or low porosity, or highly
dolomitic in nature. Log and core data were collected and
screened. A cell declustering algorithm (the declus program in
GSLIB) was used to calculate declustering weights, and the data
were transformed into normal scores (the mscore program in
GSLIB).

Limestone, dolomite, and anhydrite data were obtained from
core, as well as estimates made from density/neutron logs and
sonic/resistivity tools.  Horizontal and vertical indicator
variograms were developed for each layer. For the major
lithologies, spatial analysis led us to conclude that well control
from one-kilometer well spacing was dense enough to allow use
of indicator simulation. Lithology models were constructed
using a sequential indicator simulation algorithm (the sisim
program in GSLIB).

For layers which contained significant dolomite, separate
porosity models were built by lithology to preserve the
appropriate porosity distributions.  Porosity models were
generated using a sequential Gaussian simulation algorithm
(the sgsim program in GSLIB). The separate porosity models
were merged based on the presence of limestone or dolomite
from the lithology models.

For lithology, Figure 3 shows examples of indicator variograms
(limestone/dolomite) for layer 5, a heterogeneous layer
containing a significant amount of dolomite. The dashed line
represents the experimental variogram data; the solid line is the
variogram model. In the horizontal direction, an anisotropy
was observed and modeled with a primary direction of 30
degrees east of north and a minimum direction of 120 degrees
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east of north. For porosity, Figures 4 and 5 show horizontal and
vertical variograms for limestone and dolomite in layer 5.

Figure 6 shows an example of a simulated lithology distribution
for layer 5. Figure 7 shows an example of a simulated porosity
distribution for layer 5.

APPROACH PERMEABILITY

TWO-STEP FOR

MODELING

Field observations have shown that corc data alone are
inadequate to explain all of the permeability that exists in this
field. Pressure buildup tests show values .of permeability-
thickness several times that predicted by core analysis. (Also,
flowmeter surveys in the area commonly show intervals of
highly-confined flow.) Furthermore, trends evident in field
performance data (water arrivals, water cuts, and salinity) show
flood front movement at a rate much faster than anticipated in
parts of the field, indicating that permeabilities are much
greater than those measured in core analysis. Consistent with
these field observations, previous simulation studies of this area
have shown that permeabilities must be increased several times
above the core values to obtain an acceptable match of ficld
performance history.

Several factors appear to contribute to this observed
discrepancy. The factors include:

(1) Core recovery is poor in the presence of fractures cr large
vugs, and in an interval of very high porosity at the top of
the reservoir.

(2) Core samples sclected for core analysis tend to be fairly
uniform to avoid problems in testing. As a result, the
permeabilities measured in routine core analysis tend to be
low.

(3) Fractures and fracturing associated with faults may be a
major contributor to the permeability and observed field
performance.

Definition of Terms

To build more effective geologic models, a methodology was
developed to incorporate both the well test data and core
permeability measurements into the construction of geologic
models of permeability. The procedure used for this process is
outlined in the two columns on the right of Figure 1. Total
reservoir permeability was divided into two components which
we have termed “matrix" permeability and "large-scale”
permeability. Each component was modeled separately using
geostatistical techniques. At the end of the process, the two
components were recombined to give total permeability.

"Matrix" permeability is defined as the permeability developed
from values measured in core analysis. "Large-scale”
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permeability represents the additional permeability, above the
values’ measured in core, reflecting the observed field
performance. The sum of these two components represents the
total permeability, and is referred to as "reservoir-scale”
permeability.

For further clarification, the reservoir-scale permeability can be
expressed as the sum of the matrix (core) values plus the
additional permeability (large-scale) as follows:

k =k . +k

reservoir = Konatrix + Kiagge eevvereveereerressssssssninninnneeesss (1)
scale scale

Rearranging equation 1 gives:
khtge = kmervonr -

scale scale

Assuming that the "reservoir-scale” permeability is measured by
pressure buildup and falloff tests, it can be replaced by a "well
test” term:

Kiuge = Kot = Kopage oo o)

scnlc test

Advantages of Two-Component Approach

There are several advantages to modeling the permeability in
two components;

(1) It acknowledges that the permeabilities measured in well
tests are significantly higher than core values for this field.
Improved geologic models can be developed by
incorporating these data "up-front" in the building of the
geological models.

(2) "Large-scale" features and trends measured in well tests
can be identified and modeled separately from core data.

(3) By separating these components during the geostatistical
modeling process, this approach preserves the integrity of
both the core data and the extra permeability measured in
field tests and seen in the field performance.

MATRIX PERMEABILITY

Core porosities and permeabilitics were used to develop the
matrix permeability models using Markov-Bayes simulation
(the mbsim program in GSLIB). Core data were available for
27 wells, which represents 15% of the total wells in the study
areca. Because of the limited sample size (relative to log data),
geologic and statistical criteria were used to group core data.
Distinct crossplot groups were obtained by merging data from

layers 2 to 11 to form group 1, and data from layers 12 to 17 to

form group 2 (see Figure 2 for layers). Each of these major
groups was also separated by limestone and dolomite making a
total of four porosity/permeability crossplot groups. Matrix
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permeability models were built, by lithology, for each layer.

- The final matrix permeability models were developed by

merging the separate models together using the lithology
models.

Markov-Bayes Algorithm

The Markov-Bayes (mbsim) approach was chosen for modeling
matrix permeability because it builds models with spatial
continuity through the use of the variogram while still honoring
the bivariate relationship between porosity and permeability
(i.e., the crossplot). The traditional approach of developing a
linear transform for the porosity/permeability data does not
capture the variability in the bivariate relationship and results in
smoothing of high and low permeability values. In addition to
core measurements at well locations, mbsim also allows use of
additional data for conditioning the models.4 For this study, the
porosity models were incorporated as additional data to build
spatial continuity that is closely related to the porosity model
and honors the variability of the crossplot.

Each crossplot was calibrated for input to mbsim using a
GSLIB utility program called mbcalib. The general oonoept of
the calibration procedure can be described with the aid of Figure
8, a crossplot for group 1 limestone. Bivariate statistics are
printed above the plot. (A linear transform is provided for
reference but is not used for modeling matrix permeability.)
The crossplot has been divided into 8 porosity classes and 15
permeability  classes. Permeability class frequencies
(percentage) for each porosity class are printed in the corner of
each porosity/permeability class. The number of porosity and
permeability classes were selected to provide adequate
representation of the crossplot to the extent that adding more
classes does not affect the outcome of the simulation. The
mbcalib program calculates factors to weight the porosity
model relative to the variogram model for predicting
permeability.  Further information on the Markov-Bayes
procedure is contained in References 3 and 4.

Variogram Modeling

An interactive modeling program was used to develop
variogram models to match the experimental data.
Experimental variograms from core permeability data revealed
good vertical continuity; however, the limited sample size made
it difficult to develop variogram models for horizontal
continuity. Experimental horizontal variograms were analyzed
for 20 different directions at 15 degree increments; however,
erratic behavior was observed in all layers and variogram
models could not be fit to the experimental data.

In the absence of sufficient experimental evidence of horizontal
continuity, porosity variograms were scaled to build
permeability variogram models that “"borrow" horizontal
continuity from the porosity model while preserving the vertical
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continuity observed in core data. First, we matched vertical
continuity observed in each layer as closely as possible by
reducing the range parameters for each porosity variogram.
Our analysis showed that the vertical variogram ranges were
approximately one-half the ranges of porosity for equivalent
samples. Therefore, this factor was used to calculate ranges for
the horizontal permeability data relative to the equivalent
porosity data. The resulting permeability variograms are
similar to the porosity variograms but the range of continuity,
both vertically and horizontally, is 50% lower. Figure 9 shows

examples of the vertical and horizontal variograms used for

ABanapraVe Va s S2AGEL QN0 ALl LNV /1%

matrix permeability in layer 5.

Two matrix permeability models were constructed for each layer
using the separate limestone and dolomite porosity/permeability
crossplots. The final matrix permeability model was generated
by combining the limestone and dolomite models using the

geostatistical model of lithology developed earlier.

LARGE-SCALE PERMEABILITY

We have defined "large-scale” permeability as all additional
permeability in the reservoir which has not been measured in
core data. Assuming that the well tests measure the sum of the
matrix and large-scale components, the large-scale component
can be calculated by subtracting the core-based matrix values
from the well test permeability. To accomplish this, foot-by-
foot values of well test permeability were calculated by merging
well test data with open-hole flowmeters, and allocating the
well test permeability-thickness according to percent flow as
indicated by the flowmeter survey. The foot-by-foot values of
large-scale permeability were then calculated as the difference
of well test permeability minus the values of matrix

masmanhil
pel lllWUlll I.y

the geostatistical model of matrix permeability described earlier
for the 250-meter cell in which the well lies.)

4 narmanhili ad
\Lne matrix pcuueauulues were extracted from

The flowmeter surveys were selected as the best method to
distribute the well test values of permeability-thickness. For
this study, we have assumed that the flowmeter surveys provide
an acceptable representation of the formation away from the
well, and not just near-wellbore. anomalies. While flowmeter
surveys have drawbacks, our view is that they still provide a
good first approximation of the reservoir permeability
distribution.

In general, the total reservoir-scale permeability, as estimated
from well tests and flowmeters, is greater than the matrix
permeability for this field. However, if the value of matrix
permeability was greater than the well test/flowmeter
permeability, the value of the large-scale permeability would be
negative. When this occurred, the value was reset to zero for
the purposes of this study. The geostatistical programs are able
to handle zero values in the modeling process. When the final

SPE 29869

reservoir-scale permeability model is constructed, the zero
values of large-scale permeability are filled in with matrix
values.

Next, the large-scale permeabilities werc analyzed and
variograms developed for each layer. Geologic models of the
large-scale permeability were generated using a sequential
Gaussian simulation algorithm (the sgsim program in GSLIB).

Data Analysis and Variogram Modeling

Prior to development of variograms, the large-scale
permeabilities were anaiyzed. Figure 10 shows a histogram and
probability plot of large-scale permeabilities for layer 5 on a
linear scale. Figure 11 shows the same data on a logarithmic
scale.

Despite the fact that the data are displayed on a logarithmic
scale, the plots show that the distribution is skewed towards low
values.® A few very large values of permeability occur around 5
to 7.5 darcies. These large values occur in limited intervals in a
few wells and probably represent fractures. Our current view is
that these may represent a separate population of fractures
which are poorly sampled. The data indicate that wells in the
ficld only occasionally intersect such large fractures, or only
some of the fractures are contributing to flow into the wellbore.
These values were included in the large-scale modeling;
however, the inclusion of these values does not have a
significant effect on the resulting models because they represent
a small fraction of the total population. While they appear to
represent a population that is poorly sampled, they will probably
have a significant impact on fluid flow in much of the area, and
therefore should be modeled either as a separate population
using geostatistical techniques (and a larger sample of data) or

“
as a discrete phenomenon (See "Suggestions for Future Work®).

The two-component approach for modeling of permeability
highlights some interesting features in the data. To illustrate,
Figure 12 shows a histogram and probability plot of matrix and
large-scale permeabilities for layer 2. Figure 13 shows a similar
plot for layer 5. Layer 2 is predominantly limestone, while
layer 5 has a mix of limestone and dolomite. As a result, the
distributions for layers 2 and 5 are markedly different. In layer
5, the matrix and large-scale permeability distributions appear
as two distinct populations indicating the highly variable
permeability in this predominately dolomite layer. The matrix
(core-measured) values tend to be low, while the large-scale
values reflect the existence of vugs and fractures not sampled in
the core data.

*Because the display is on a logarithmic scale, the zero values (matrix
greater than well test) are not displayed in the cumulative probability.
For layer 5 this represents 21 percent of the total.
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After analyzing the data, variograms were developed for each
layer to describe the spatial distribution and continuity of the
large-scale permeability.  Experimental variograms were
generated in fifteen degree increments to try and identify
directionality in the large-scale permeabilities. If faults or
bands of fractures ran in an east-west or north-south direction,
then wells would fall in areas of highs and lows and
directionality would be seen. However, a detailed analysis of
directional variograms from each layer did not show any clearly
defined directionality. While areas of more intense fracturing
may exist, they may be poorly sampled because of the current
relatively large spacing of wells. Because of the lack of any
clearly defined directionality, isotropic variograms were used.

Figure 14 shows the horizontal and vertical variogram for large
scale permeability in layer 5. The vertical variogram shows
good continuity for the large-scale permeabilities. Note that the
experimental data points do not increase to a sill of one, even
though this is normal scores data. The most probable
explanation for the occurrence of this lower than expected sill is
the relatively uniform profile of the large-scale permeability.
Recall that the flowmeter data were used to generate
permeability profiles from well test data. However, the
flowmeter data are fairly coarse and data are chosen over
intervals which may be 5 or 10 feet in length. As a result, the
calculation of the variogram would tend to average in a large
quantity of values which are essentially the same, thus keeping
the average from reaching a sill of one as normally expected in
normal scores data. Since the sgsim program is based on
normal scores, the final variogram models were scaled to a
value of one.

The horizontal variogram for layer 5 is shown at the bottom of
Figure 14. While there is a good fit of the variogram model in
this layer, there is actually a large amount of uncertainty in the
range of the large-scale variograms. We recommend that future
modeling work include testing of the sensitivity of simulation
model results based on different ranges of large-scale
variograms. For example, the ranges of the large-scale
variograms could be halved or doubled to see the effect on water
movement in the simulation model.

Canctatistical Cimmnlatinn of T aran_Crala erme
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The permeability realizations were generated using the
sequential Gaussian simulation (sgsim) program in GSLIB,
The input data were the individual well strings of large-scale
permeability and the large-scale variograms. The program
honors the primary variable as local conditioning data (values
of permeability at well locations), the conditional cumulative
distribution function (the univariate distribution of the
permeability data), and the variograms of the permeability
. (spatial distribution and continuity).
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SCALE-UP PROCEDURE

Having generated models of matrix and large-scale
permeability, the two models were added together to obtain a
geologic model of total reservoir-scale permeability as defined
by Equation 1. However, this geologic model contained far too
many cells (4,069,970) and was not feasible for use in reservoir
simulation with current computer resources. The power-law
averaging technique* was used to scale-up the geologic model
for flow simulation in a model with 79,764 cells.

Power-law averaging can be defined by the following equation:
1/
Z hlal klm

Zhiai

power

where k; is the i permeability value, 4; is the i thickness,
and a; is the fractional area of cell i.

The power-law parameter, ®, was calibrated by running a small,
one-phase flow simulator on randomly selected areas of the
geologic model. First, 300 elements of the geologic model were
sclected randomly.  Second, effective permeabilities and
corresponding o's for the x, y and z directions were computed
for each element using a single-phase flow simulator. Finally,
the 300 o values for the vertical direction and the 600 o values
for the horizontal directions (x and y) were averaged to a single
value of @ for development of permeability arrays for the flow
simulation. The calculated values of ® were distributed
symmetrically about a mean of about 0.6 with a standard
deviation of about 0.1. This distribution was considered
sufficiently narrow to justify the use of the power-law averaging
technique.

The average value of @ for horizontal flow was 0.6. For
comparison, the classical averaging methods can be considered
as special cases of power-law averaging: ®=1 corresponds to
arithmetic averaging, ®=0 corresponds to geometric averaging,
and o=-1 corresponds to harmonic averaging. The average
value for vertical flow was -0.6, higher than the traditional
value for a harmonic average.

VERTICAL PERMEABILITY

Vertical permeability was calculated from reservoir-scale
horizontal permeability prior to scale-up. Crossplots of vertical
and horizontal permeability versus porosity were compared
using moving-window statistics. The results showed that the
distribution of vertical and horizontal permeabilities were
similar for each porosity class, and that the average vertical
permeability was consistently slightly less than the average
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horizontal permeability. Based on these results, the following
equation was used to calculate vertical permeability prior to -
scale-up:

LOG (k,) = 0.9 * LOG( k)

where k, is vertical permeability and kj is horizontai
permeability.

FLOW SIMULATION RESULTS

A flow simulation model was constructed and four history
match runs were completed. The purpose of the runs was to
evaluate the usefulness of the geostatistical techniques and the
two-component approach to modeling permeability. In
addition, analysis of the history matches provided an
opportunity to investigate theories which may explain the
unusual water movement in the area and differences observed
between model and field performance.

Seventeen vertical layers were used along with a 68 by 69 areal
grid giving a total of 79,764 cells. The simulation was run for
53 years with most of the production and injection occurring in
the last 20 years.

Figure 15 shows the horizontal permeability for layer 5. The
study area is outlined in the center of the model and represents
the scaled-up array of total reservoir-scale permeabilities
developed in this study. For comparison, it is surrounded by

permeabilities from a previously history-matched model of the

field. The new permeability array fits in well with the
surrounding area from the previous model and supports the
validity of the new permeability model and the two-component
approach by which it was developed.

Initial Flow Simulation

A flow simulation (referred to as HM1) was run for the 53 years
of history. Results are shown in Figures 16 and 17. In Figure
16, the top frame compares the average model and field
pressure versus time for producers in the study area. The
bottom frame shows a plot comparing the average model and
field water cut.

Figure 17 shows an areal comparison of the model and field
flood front. The shaded areas illustrate the calculated flood
front advance with iime. The solid line represenis the
interpreted flood front at 1985 based on first water arrivals.
(The model flood front has been defined as a 0.1 percent change
in model water saturation within a column of blocks. In other
words, the flood front is considered to have arrived at a model

i ¢ . .
Iocation if the water saturation has increased by 0.1 percent

since the beginning of history.)

In summary, the initial flow simulation showed:
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(1) The calculated pressures were somewhat low, but matched
the general trends of the ficld data.

(2) Caiculated water advance was relatively uniform areally.
As a result, the model compared well with the field in areas
of relatively uniform water advance, such as the southeast
and western parts of the model;, however, in the area of
rapid water advance in the middle of the study area, the
model did not match field performance.

Based on the results of the initial flow simuiation, we concluded
that in areas of relatively uniform water advance, -the
geostatistical techniques provided a good initial match of areal
and vertical water movement. Since this “relatively uniform”
type behavior is typical of most of the field outside the study
area, the techniques used in this study will be useful for
building models of other areas of the field.

Additional Flow Simulation Results

In the next stage of the study, we made three additional flow
simulations to explore possible explanations for the
discrepancies observed between the model and field
performance in the area of rapid water advance.

After a review of all the available data, we developed a working
hypothesis that the failure of the initial model to match the
rapid water advance was due to fracture development in this
area. Several recent borehole-imaging logs indicate the

nracence of vertical fractures in wells in this area,

Prwowilve Vi Vwiliwia: iiGve

This theory was tested in three additional simulations.
Fracturing was simulated by increasing permeabilities in layers
which were predominately dolomite and in thin, low-porosity
layers, based on the assumption that the rocks in these layers
were most subject to fracturing. '

Figure 18 shows a comparison of the pressure and water cut
comparisons for the first and last flow simulations (HM1 and
HM4). Calculated pressures and water cuts are higher in HM4
due to the increases in permeability and changes in permeability
stratification which were made to increase the movement of
water into the field.

Figure 19 shows an areal comparison of the model and field
flood front at selected times. Compared with HM1 (Figure 17)

P 22t o Py e i i
significant improvements were made in matching the field

observed flood front in the middle of the study area.

The results of the additional flow simulations provide support
for the hypothesis that the geostatistical models did not
adequately capture the effects of the vertical fractures. A review
of the data showed that fractures were not adequately sampled
in the study for two reasons. First, vertical wells do not
intersect a representative number of vertical fractures and their
impact on fluid flow is not adequately represented. Second, in
the area of rapid water advance, the number of open-hole
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ﬂowrﬁeters were limited. As a result, much of the well test data
in this area were not used in the modeling process.

SUGGESTIONS FOR FUTURE WORK

While the geostatistical techniques were successful in modeling
the areas of relatively uniform flood front movement, the lack of
adequate sampling of fractures is needed for improvements in
the reservoir description. Further analysis of flowmeter surveys,
additional borehole-imaging logs, and horizontal wells can
provide more data on the existence of vertical fractures. In
addition, information from seismic surveys would provide
useful information on the locations of possible faults and
associated high fracture densities. With this additional data,
geostatistical techniques could be used to incorporate fractures
into the geologic models. Alternatively, the data may be used as
guidance for modeling of faults and fractures as discrete
phenomena.

We also suggest that use of multidisciplinary teams for similar
studies provides an effective approach for integrating all the
data "up-front" in the construction of geologic models.

Finally, the impact of different ranges for the "large-scale”
permeability variograms should be investigated. There is
considerable uncertainty in the ranges for permeability, and the
effect of different ranges on simulation results should be tested.

CONCLUSIONS

Overall, the two-step approach for modeling permeability
worked well in this project and should be applicable to
situations where a significant difference exists between core-
based permeability measurements and larger-scale permeability.
It allows the straightforward integration of core and well test
data and simplifies history matching by providing better
geologic models of permeability. It can also provide a better
understanding of the data because each component is analyzed
independently, and separate spatial "trends” caused by
depositional or post-depositional processes can be identified.
Furthermore, by modeling the components separately, different
spatial "trends” in the matrix and large-scale components are
preserved in the final geologic models.

Geostatistics provides a scientifically based, methodical
approach for developing reservoir characterizations within a
consistent framework. The public-domain GSLIB software
package, along with some custom programs for data
manipulation and interactive variogram modeling, allowed for
the timely and efficient construction of the geological models.
The techniques also allowed integration of a wide range of
geologic and field performance data into a comprehensive 3-D

PR Py

modeling system.
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Initial flow simulations showed that the geostatistical
techniques (as used in this study) worked best in the areas of
"more uniform" water advance. Since much of the field has
experienced a similar type flood front advance, these techniques
can be successfully applied in the development of future
geologic models.

In areas of rapid water advance, the reservoir description from
the initial geostatistical models did a poor job of simulating
field performance. Our view is that the most likely cause of the
rapid water advance is the existence of vertical fractures (and
possibly faults) and these were not adequately sampled in the
data used for modeling this area. Seismic surveys, additional
borehole-imaging logs, and horizontal wells can provide more
data on the existence of vertical fractures, and geostatistical
techniques can be used to incorporate fractures into future
geologic models.

NOMENCLATURE

a = fractional area of cell
14 =  variogram function

h = cell thickness

k = absolute permeability
® =  power-law parameter
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Figure 8: Crossplot for Group 1 limestone
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Figure 10: Histogram and probability plot for large-scale permeability (linear scale)
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Figure 11: Histogram and probability plot for large-scale permeability (logarithmic scale)
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Figure 12: Histogram and probability plot for matrix and large-scale permeability - Layer 2
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Figure 13: Histogram and probability plot for matrix and large-scale permeability - Layer 5
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Figure 15: New permeability array embedded in matched model
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