Mr. Clayton V. Deutsch

Stanford University
Stanford, California

ABSTRACT

Indicator Kriging (IK) is being commonly applied to
-mineral resource assessment problems. More recently,
indicator simulation has also been used for sensitivity
analysis and difficult change of support problems. The
essential theory underlying indicator geostatistics has

ot changed since its introduction 10 years ago; how-
ever, the last decade has produced many important de-
velopments in its implementation. The objective of this
paper is to consider some of the more important im-
plementation details. Examples from the Porgera gold
deposit in Papua New Guinea are used to illustrate the
steps in an indicator geostatistical study and the im-
portance of various implementation decisions.
Specifically, in many precious metals deposits the
continuity of the grades is typically quite anisotropic.
This anisotropy varies in both magnitude and direc-
tion throughout the deposit. Building a model of this
anisofropy can considerably improve the local kriged
o simulated points. One approach to build this model
Jis presented. In addition, there is typically more than
‘one mineralization style and geological rock type; the
spatial character of the mineralization can be quite dif-
ferent within each geological rock type. The rational
reatment of anisotropy and geological subdivisions is
‘common to all mineral resource assessment procedures;
the importance of this qualitative geological informa-
tion is not diminished with more sophisticated tech-
niques such as indicator kriging.
This paper presents an overdue comprehensive look
at the practical aspects of indicator methodology.
Many of the techniques and procedures documented in
this paper have been developed during the course of
detailed mine feasibility studies.
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INTRODUCTION

This paper focuses on indicator kriging (1K) because
the method has enough flexibility to model the grade
distribution in most deposits and is simple to explain
and implement without a great deal of training. More
straightforward manual methods or geostatistical meth-
ods like ordinary kriging do not have the same flexibil-
ity, e.g., IK allows the variograms to change with the
magnitude of the grade. Furthermore, IK provides a
probabilistic framework to evaluate change of support
problems, and recoverable reserves for various selective
mining unit sizes.

The first step in any geostatistical study is to con-
sider the geological controls of the mineralization. It
is vital to directly incorporate as many of these con-
trols as possible into the numerical model of the de-
posit. The actual implementation of the interpolation
or simulation algorithm is important once the detailed
geology model is in place. In practice, the implementa-
tion details of a particular geostatistical methodology
are as important as its theoretical foundation. Most
methods will give acceptable results if enough geolog-
ical controls are accounted for and there are enough
conditioning data; therefore, a comparative study of
different methods is not worthwhile.

One important component of the geological con-
trols is information on preferential directions of con-
tinuity. These preferential directions may be due to
structural features such as fracture or shear zones, or
lithological features such as the rock type, the con-
tact between the different rock types, or gradational
composition changes. In any case, the magnitude of
the anisotropy is usually quite strong and important.
Where this anisotropy is significant the orientation of
the anisotropy is also very important. Rarely can the
orientation be considered as constant throughout the
entire deposit; often, the direction must be aligned lo-
cally. An approach to achieve this local alignment will
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be presented.

A second important component of the geological con-
trols is the presence of numerous rock types. In most
cases the data must be separated into different rock
types or geological zones. Moreover, there may be over-
lapping controls to the mineralization, i.e., a rock type
model with a co-dependent structural model. Although
there is no general approach to treat these geological
controls some thoughts and methods that have worked
in practice, will be presented.

Indicator kriging is described in numerous references
with some pointers on how to implement the kriging
and the follow-up steps necessary to obtain a mineral
resource estimate. However, many practical problems
have never been fully discussed, for example, choosing
the cutoffs, incorporating data of different types, mod-
elling the indicator variograms, correcting order rela-
tions, and accounting for selective mining unit volume
support. These practical problems will be discussed
with examples from the Porgera gold deposit in Papua
New Guinea.

The topics discussed in this paper will roughly corre-
spond to the order in which they are performed in prac-
tice. Of course, some steps overlap, are independent,
or are performed iteratively with other steps. The idea
behind the definition of geological domains will be dis-
cussed first. Secondly, the motivation for and procedure
to build anisotopy models will be discussed. Thirdly,
IK will be described in some detail. Finally, some ad-
ditional topics such as the transition to mine planning,
indicator simulation, an alternative IK procedure, and
testing the validity of parametric geostatistical meth-
ods will be discussed.

GEOLOGICAL MODELS

The idea behind geological models is to define the
3-D geometry of zones of mineralization which can be
considered to have the same properties. Subsequent
geostatistical studies or manual evaluation methods will
use these 3-D models to constrain how data are com-
bined. The block size is either chosen small enough
or some type of block splitting is used to adequately
resolve geological boundaries. Solids modelling tech-
niques will undoubtedly be used more extensively in
the future.

The stationary or homogeneous geological domains
may be based on such features as rock type, the level
of oxidation, level of fracturing, or the mineralization
style. Moreover, the geological model may change for
different metals, e.g., silver may be affected more by
oxidation than gold; hence, there may be additional
zonation near the surface. Additional models may be
built for metallurgical classification and specific gravity.

The definition of so-called stationary or homogeneous
geological domains depends on the amount of data and
the goals of the study. In some cases the scale of the
study permits all of the data to be considered as one
stationary population. In other situations, where there

are enough data, it is essential to use several different
domains,

The Porgera gold deposit is located in the high-
lands of Papua New Guinea, 600 km north-west of Port
Moresby. Epithermal gold-silver mineralization occurs
in and around small late Miocene basic stocks and
dykes intruded into Cretaceous carbonaceous shales
and calcareous siltstones. The deposit has proven and
probable mining reserves of 50.8 mt at 7.6 g/t gold,
including 6.6 mt at 24.5 g/t gold in a high grade un-
derground mining section. Production commenced in
1990, and the deposit is expected to produce 900,000
ounces gold per year for the first ¢ir years of produc-
tion.

Mineralization is strongly structurally controlled by
intrusive contacts and a variety of fault and breccia
zones, the most important of which is the Roamane
Fault zone (Figure 1). The earliest phase of miner-
alization was low silica, high suplhide and consisted
of carbonate-quartz-pyrite-sphalerite-galena veins and
disseminated pyrite. Gold is closely associated with the
sulphides, often within the lattice of the pyrite. Su
perimposed on this is a lower temperature high-silica
assemblage of vuggy quartz, carbonate and roscoelite
with minor sulphides, coarse gold and various tel-
Jurides. Though this assemblage occurs throughout the
Porgera deposit it has produced bonanza gold grades
in breccias in and adjacent to the Roamane Fault. Sev-
eral other mineralization types characterize other parts
of the mineralized system.

The variety of mineralization styles and structural di-
rections in the mineralized system dictate that mineral-
ization be modeled by dividing the deposit into several
relatively homogeneous domains. Even within these do-
mains, continuity directions vary. The deposit is best
modeled by varing continuity directions within these
domains. The large data base (more than 60000 2m
samples) has gold grades up to 5000 g/t.

ANISOTROPY MODELS

The continuity of the mineralization typically varies
with direction. During the formation of the orebody,
or some later remobilization of the ore minerals, there
are preferential directions of continuity formed by zones
of weakness or host rock mineralogy. This anisotropic
permeability field causes the mineralizing fluids to fol-
low preferential paths. If nothing else, gravity causes
temperature and pressure gradients which influence the
deposition of most ore minerals.

Wherever the continuity of the mineralization is di-
rection dependent it is very important to have the di-
rection correctly defined. A misalignment of 10 degrees
can cause extrapolation of ore into waste and waste
into the ore zones. If an average direction of continu-
ity is used artificial lenses can be created wherever the
mineralization has curvilinear patterns of anisotropy.
Figure 1 shows a simplistic 2-D example of what can
happen. In this case neither the grade nor the tonnes
of ore will be estimated correctly.
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Figure 1: An example of the discontinuous lenses created
by using an average direction of continunity in presence of
curvilinear structures.

Rather than build 3-D models of these anisotropy
parameters it may be possible to transform the coor-
dinates to unfold the mineralization. This transforma-
tion is straightforward in certain cases [Dagbert, et.al.,
1984; Deutsch, 1989]; however, it is not usually feasible
in 3-D because of the difficulty in working out the an-
alytical expressions for the coordinate transformation.

The best approach is to construct a block model of

the parameters that define the anisotropy. In this way
every location could have a different anisotropy defi-
nition for kriging and/or simulation. The block size
can be chosen to adequately resolve the fluctuation
in each parameter defining the anisotropy. Typically,
the anisotropy angles can vary in space but not the
anisotropy ratios which are left fixed for each geologi-
‘eal domain.
* Although the anisotropy model can be used to
orient the search ellipse and for computing vari-
ogram[structural distances in kriging, it can also be
‘used with inverse distance or closest sample estimation
schemes.

A similar scheme to handle variable anisotropy has
‘been proposed independently by Soares, 1990. How-
~ever, the goal was different; he only considered one in-
dieator cutoff to establish the geometry of 2-D rock
Figure 2 illustrates the three angles and two
sotropy factors required in 3-D. Many software pack-
ages take a shortcut and only use two angles and two
anisotropy factors. The third angle, which is necessary
to accommodate the geological concept of a plunge or
rake, is required when the ellipsoid defining the geo-
’,ﬁz&ic anisotropy does not have any horizontal axis.
g the geometric anisotropy within the limbs of
4 plunging syncline typically requires three anglas In
general, modeling anisotropy with three angles is not

First Angle (ang1)
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M30E)
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range = sa - 10
anisowepy - anit! = 1020 =05

Rotated Z axis
{20 degress toward NIOE)

angie = angd = 20
ANAOSDY = aiad = 6.7/20 = 0.333

wngle = angd « 10
New Rototed Z nus
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Figure 2: An illustration of the three angles and two
anisotropy factors required to define anisotropy in three di-
mensions.

easy.

The easiest way to describe the three angles and
two anisotopy factors is to imagine the rotations and
squeezing that would be required to transform a sphere
to an ellipsoid. The outside shell of this ellipsoid repre-
sents the physical distance at which the mineralization
has the same level of continuity; if the mineralization
is one half as continuous in a direction the ellipse will
be one half as large. This ellipse can also be thought of
as the range of the variogram. A longer range implies
a better continuity as measured by the variogram.
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The distance in every direction but the principal di-
rection defined by angl and ang2 will be adjusted so
that it is on the same basis. Two anisotropy factors are
needed to define lengths of the other axes.

The models of anisotropy parameters are constructed
in the same way as grade block models. The data have
to be coded into a computer file and some interpolation
algorithm applied to associate the parameters to regu-
lar sized grid blocks. The values are usually marked on
sections or level plans and then digitized. There is no
special difficulty with the anisotropy factors; however,
the angles require some special care:

» Subsequent kriging or simulation requires true an-
gles and not apparent angles as given on regular
spaced sections. A dip angle is only correct when
the section is approximately normal to the azimuth
of the second axis.

The following equation [Rock, 1988] should be used
to compute a weighted average of the n angles
8;,i=1,...,n with the weights A;,i=1,...,n:

f=cos™!
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These equations account for the fact that angles
are periodic, i.e., 360° is the same as 07

Figure 3 shows the dominant structural directions
controlling gold mineralization in the high grade un-
derground mining area of the Porgera deposit. These
structural directions are related to steep southerly dip-
ping and vertical faults and fracture zones that con-
trolled permeability at the time of gold deposition.
The near vertical structures generally control an ear-
lier phase of gold mineralization but were re-opened
and further mineralized in later events. Such local
changes in controlling directions of mineralization can-
not be modeled by making separate domains, as the
number of such domains would be unmanageably large.
The use of anisotropy models for dip azimuth, dip, and
if required, plunge, allows grades to interpolated where
they are expected to oceur based on geological controls.
This is particularly important for underground resource
estimates, In addition the correct data will be used for
estimation; high grade blocks will be kriged using high
grade data, rather than the data that might have been
used if average filter directions were used. The method
is most applicable where geological controls are well
understood, and there is sufficiently detailed data to
estimate blocks without needing the search to extend
too far from the blocks being kriged.

23rd APCOM PROCEEDINGS

Figure 3: Directions of continuity of mineralization in relx
tion to drill hole intersections Porgera Gold Deposit, section
22350E.

INDICATOR KRIGING

Essentially, geostatistics is a collection of statistical
tools that are used to understand and model spatial
variability. The models of spatial variability are then
used for descriptive and predictive purposes. In the
context of mineral resource assessment the goal is al
most always predictive, i.e., to estimate the quantity
of metal in a deposit with an associated measure of
uncertainty.

The basic approach of all predictive statistics is to
turn any unsampled (unknown) value 2 into a random
variable Z. The probability distribution of Z then chas-
acterizes the uncertainty about the unknown true value
z. The probability distribution of Z depends on the lo-
cation u (a three dimensional vector with east, north,
and elevation coordinates) and the level of information
near u. The cumulative distribution function (cdf) of
Z(u) is denoted:

F(u;2) = Prob {z(u) < z} (2

when the cdf F(u;z) is conditioned to a particular sel
of information, e.g., n nearby data values Z(u;) =
2(u;),i = 1,...,n. The notation “conditional to (n)" is

T L ™ iy - 0 P,
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used, defining the conditional cumulative distribution
function (cedf):

F(u;z|(n)) = Prob {z(u) < z|(n)} (3)

Expression (2) characterizes the uncertainty about
the unsampled value z(u) prior to using the informa-
tion set (n); expression (3) characterizes the uncer-
tainty once the information set (n) has been accounted
for. The goal of any prediction algorithm is to update
prior models of uncertainty such as (2) into posterior
models of uncertainty such as (3). Note that the ccdf
F(u;z|(n)) is a function of the location u (not all un-
sampled values are equally uncertain), of the sample
size and geometric configuration (the data locations
w;,i=1,...,n) and of the sample values (the values
1('].),]‘: Il"‘ln)'

Various optimal estimates for the unsampled value
2(u) can be derived, not necessarily limited to the least
squared error estimate which is the mean of distribu-
tion (3) [Srivastava, 1987]. Global change of support
techniques such as the affine correction and the indirect
correction through permanence of a lognormal distribu-
tion can also be applied at the local level to estimate
the local recoverable reserves. Finally, realizations can
be drawn from the local distribution to provide a con-
ditional simulation.

The important concept behind indicator geostatistics
is the direct coding of experimental data in the form of
cumulative distribution functions (cdf). The cdf of a
single data z(u;) would appear as a step function; 0
‘for all grade thresholds less than z(uj) and 1 for all
grade thresholds greater than z(u;). This 0/1 coding
at a specified threshold cutoff z; defines an indicator
function:

i 0, if

00 R e A
Kriging of the indicator variable provides an estimate
of the ccdf F(u;z|(n)):

E{I{u;z)|(n)} 1 x Prob {I(u); z) = 1|(n)}
0 x Prob {I(u); z) = 0|(n)}
Prob {I(u); z) = 1|(n)}
F(u;z|(n)), as defined in(2)

Thus, kriging applied to indicator data provides a least
squares estimate of the cedf (2). Note that indica-
tor kriging is not designed to directly estimate either
the unsampled value z(u) or its indicator transform
i{u;2); it is designed to provide a cedf model of un-
certainty about z(u). The IK approach is said to be
non-parametric in the sense that it does not estimate
the cedf through its parameters but, rather, the ccdf
for various threshold values of z are estimated directly.

As opposed to parametric techniques, IK calls for K
kriging systems if there are K cutoffs z; discretizing
the cedf F(u;z;|(n)) and for an equal number of in-
dicator variograms. Its advantage over parametric ap-
proaches is that it captures much more from the origi-
nal z-data than a mere z-variogram: K indicator vari-
ograms are extracted from the data rather than a single

| |

variogram. This greater reliance on actual data is the:
main strength of the indicator approach. An impor-
tant prerequisite is that there must be enough data to
reliably infer the K indicator variograms.

Typically, seven to fifteen cutoffs K provide an ade-
quate discretization of the cedf. Each data is replaced
by K 1/0 indicator transforms. Variogram analysis is
carried out on the indicator transforms at each cutoff,
Then, ordinary kriging is used to estimate the distri-
butions at any number of unsampled locations. The
estimated distributions will not be step functions due
to the uncertainty in estimating at an unknown loca-
tion. Of course, the closer the surrounding data are to
the unsampled location, the closer the distribution will
be to a step function characteristic of a perfectly known
data value.

The following steps describe the traditional IK ap-
proach documented in the literature [Journel, 1983;
Journel, 1987]:

STEP One: Choosing the cutoffs

There are a number of sometimes conflicting goals
when choosing the K cutoffs zz k = 1,..., K. First,
there should be a cutoff wherever the variogram, or
spatial structure, changes significantly. Second, enough
cutoffs are required to account for details of the distri-
bution. Finally, since the K cutoffs are estimated in-
dependently there is no need for them to jointly honor
the axioms of a probability distribution (violations of
the axioms of a cdf are referred to as order relation de-
viations). To keep these violations within reasonable
limits no more than 9-15 cutofls should be considered.

Usually only a few cutoffs are necessary to describe
the changing nature of the variograms; however, more
are required to provide an adequate discretization of
the distribution. One common solution is to choose
the mazimum number of cutoffs and then simplify the
indicator variogram modelling effort by interpolating
the model parameters between a few cutoffs that have
been modeled.

Some other considerations:

» There is no need to have a large number of cutoffs
in an uninteresting part of the distribution. That
is, only a few cutofls need to be chosen below the
cutoff. Commonly the median grade is below the
economic cutoff. In this case, it is unnecessary to
choose the first four deciles as cutoffs.

o The grade cutoffs change after volume support cor-
rection (accounts for mining selection). Therefore,
it is unnecessary to choose the economic cutoff.
Furthermore enough cutoffs should be chosen both
below and above the economic cutoff to provide de-
tails in the important part of the distribution after
volume support correction.

® Choosing deciles of the distribution is not a good
choice because resolution is lost in the important
upper tail of the distribution. Moreover, cut-
offs which give classes with an equal quantity of
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Figure 4: Lognormal probability plot of gold data from one
domain of the Porgera gold deposit.

metal are unacceptable because there will be too
few classes in the lower tail. The best aufomatic
choice would be to choose the first half of the cut-
offs such that they separate the distribution into
classes with roughly the same number of data. The
second half of the cutoffs can then be chosen such
that the classes contain roughly the same quantity
of metal, For typical “lognormal” type precious
metal distributions each cutoff will be roughly dou-
ble the preceding cutoff (e.g., 0.1, 0.2,04,08,1.2,
2.4, 4.8, 10.0, 20.0, g/t).

Looking at probability plots can provide some in-
sight into the selection of appropriate cutoffs. For
example, significant changes in slope or disconti-
nuities are logical thresholds for cutoffs. Figure 4
shows a probability plot for data from one domain
of the Porgera deposit.

« The alternative 1K approach presented in Ap-
pendix A avoids the problems associated with
defining artificial class boundaries.

e Indicator variograms for cutoffs less than the 10th
percentile and above the 50th percentile are very
difficult to infer due to the small proportion of
indicator data lesser and greater than the cutoff.
Moreover, the 10th percentile of data for precious
metal deposits is usually at or near the limit of an-
alytical accuracy where data are noisy, hence very
low cutoffs should be avoided.

STEP Two: Indicator Transformation

If all the assays represent samples collected and as-
sayed by the same technique then there is no difficulty
in constructing the indicator transformations. For a
particular cutoff zx and data value z(u;y) the indicator
transform i(z(u;); 2¢) is 1 if the grade z(u;) is less than
the cutoff zx and 0 otherwise.

The K indicator transforms for a particular data
z(u;) will be zeros until the data is less than a cutofl

and then all the indicator transforms will be ones. The
indicator transform is equivalent to coding the data in
the form of a cdf, i.e., when the indicator transform
is zero there is a 0% probability that the grade is less
than the cutoff and when the transform is one there is a
100% probability that the grade is less than the cutoff.

When evaluating a mineral deposit it is common to
have various types of assay data, For example, old drill-
holes, chip or bulk samples, different sampling tech-
niques, and sometimes just different assaying methods
for the same sampling technique. In many cases it is
possible to code secondary data as soft data. That is,
the indicator transforms will not show the characteris-
tic sharp 0 to 1 transition. The soft or fuzzy indica-
tor transforms are obtained through calibration scat-
terplots.

STEP Three: Variogram Modelling

A variogram model is needed for each of the K cut-
offs chosen. These variograms are typically well be-
haved and easily interpreted because, by definition,
there are no outliers. Moreover, there is some conti-
nuity imparted to the K variograms due to their com-
mon physical origin. Therefore, they should not be
modelled independently. Note that the variance of an
indicator variable is p(1 — p) where p is the proportion
of 1's, that is, the average indicator value at a cutoff:
pe = 2 37, i(uj; 7). Prior to modeling the indicator
variograms it is suggested that the variogram values for
all indicator thresholds k be divided by their respective
pe(1 — pi) variance. The sill of each variogram will the
be approximately 1.0 and it will be simpler to jointly
model all indicator variograms.

1t is good practice to build the K models from
a common pool of L structures [Journel, 1987}, say
Sphg,(h),l=1,..., L,

L
yi(hiz) = Y Cilzx)SPha(ar)(B) ()

Where Sphy, (h) is the spherical variogram model for a
range parameter a; and distance vector h. The variabil-
ity of the amplitude parameters C(z) and any varying
anisotropy parameters should be plotted and appear
reasonably smooth. There should not be sudden large
changes in the variogram parameters unless there isa
good physical explanation (for example, above a cer-
tain level z; the mineralization seems to be controlled
by a different process).

This approach to modelling indicator variograms ac-
counts for the common origin of the indicator variables,
makes it easy to infer the variogram model for addi-
tional cuttofs (interpolate the model parameters), and
reduces order relation deviations: The scaling of the
variogram by the variance p(1 — p) does not affect the
kriging weights.

Figure 5 shows the indicator variograms from one
domain of the Porgera deposit.
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Figure 5: Indicator variograms from one domain of the Porgera gold deposit.

STEP Four: Kriging

At each location the ordinary kriging system is con-
structed and solved for all K cutoffs. The search radius
and the number of data must remain the same from one
cutoff to the next; a histogram or cedf distribution is
constructed with a set of data independent of the mag-
nitude of the data values. Since only the variogram
changes from cutoff to cutoff an iterative matrix solver
may be used to reduce the computer requirements.

After kriging it is necessary to ensure that the es-
timated cedf follows the axioms of a cdf. The order
relations need to be corrected:

F(u; z|(n)) > F(u;2'|(n)), for any z > 2’ (6)
and: F(u;z|(n)) € [0,1]

The ccdf values estimated by IK may not satisfy these
‘order relations. The amplitude of such deviations is not
‘usually large [Journel, 1987], deviations greater than
0.01 possibly signal an implementation error such as
not-acceptable covariance models.

The following algorithm corrects the estimated ccdf
F'lug; 24|(n)),k = 1,..., K without introducing any

1. Correct all the order relations by going up-
ward from the lowest cutoff z, to the high-
est zx to produce a correctly ordered sequence
Fl(ug; zi|(n)), k= 1,..., K.

2. Correct all the order relations by going down-
ward from the highest cutoff zx to the low-
est z; to produce a correctly ordered sequence
F*(ug; z|(n)), k=1,..., K.

3. Retain the series created by the average of the two:

F(uo; 2](n)) = F-C%0: 2()) ; F2(uo; 2(n))

&=1..K

There are other algorithms available but a simple se-
quential correction should be avoided because a bias
will be introduced to the estimated average grade.

STEP Five: Volume Support Correction

The IK distributions represent the same volume sup-
port as the data (the composited core volume). It
is possible to correct these local distributions so that
they represent the volume of a selective mining unit
(SMU). Volume support correction is important when
the drilling data are too widely spaced to clearly iden-
tify the high grade portions of the orebody. In these
situations the smoothing effect of kriging will provide
a biased reserve assessment above any elevated cutoff.

Classical volume support correction procedures cor-
rect the quantiles of the IK-derived distribution by re-
ducing the variance and leaving the mean unchanged.
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where: i(u; z;) is the kriged indicator value at cutoff k,
i(u; 20) = 0, i(u; 2k41) = 1, and my is the mean of the
declustered data falling between class z; and zg—i.

The affine correction resets all of the z; cutoff values
closer to this mean m(u)* without changing any of the
kriged indicator values i(u;z), i.e.,

zvx(0)” = Vf [z — m(u)*] + m(u)*) (8)

where /J is the variance reduction factor calibrated
from the variogram.

Note that the mean m(u)® is unchanged by volume
support correction; therefore, if the goal is simply to
infer the local mean at each location u then no volume
support correction is necessary. It should be noted that
contouring the local mean m(u)* will often result in
a smoother map than ordinary kriging; however, the
mean grade above an economic cutoff has different spa-
tial characteristics than the mean above a zero grade
cutoff.

Geostatistical books [Journel and Huijbregts, 1978;
David, 1979; Isaaks and Srivastava, 1989] cover this
subject and more advanced procedures such as the in-
direct lognormal correction.

STEP Six: Calculation of Recoverable Reserves

In many cases the local mean values (6), or E-type
estimates, are the end goal; however, an estimate of
the local probability or proportion of recoverable ore
p(u; z.)" and the local mean m(u;z.)* above an eco-
nomic cutoff z. may also be computed.

The probability or proportion of recoverable ore in an
area may be directly obtained from the volume support
corrected distribution:

plu; z.)" = 1 —i(u;2v,)" (9)

It is unlikely that a cutoff zy x(u)* falls exactly on the
economic cutoff z.; a linear interpolation between the
known cutoffs is used.

The recovered ore grade is simply the grade above
the economic cutoff z,,

K . i
aeya>ae M [0 2v,) — (05 2v,0-1))

plu; z.)*
(10)

There may be a partial class between z. and the first
cutoff zy greater than z.. This is handled by linear
interpolation.

The chosen level of selectivity (SMU size V) can then
be used for reserve reporting and project economics.
This is attractive because it offers the possibility of
adapting the reserve to the mining selectivity.

Figure 6 shows the E-type estimate for one section
‘through the Porgera deposit.

my (w;2)" =

Figure 6: A contour map of the IK E-type estimate for one
section through the Porgera gold deposit.

SIMULATION

Until now the focus has been on IK to construct asin-
gle orebody model; however, the simulation approach
allows alternate equally probable orebody models to be
created that match the indicator variograms.

The sequential indicator simulation algorithm
[Gomez and Srivastava, 1990; Journel, 1989; Journel
and Alabert, 1990] can be employed to create realiza-
tions that match the indicator variogram models, The
sequential indicator simulation algorithm to simulate
the grade Z(u;) for n grid nodes consists of the follow-
ing steps:

1. Start at any node u; and derive the conditional
distribution of the grade Z(u,) given all the nearby
data.

2. Draw a realization from that conditional distribu-
tion, say, z,(u;), and consider that value as con-
ditioning data for the simulation of all subsequent
nodes.

3. Move at random to a second node, say uz. De
rive the conditional distribution of the grade Z(u;)
given all available original data and the first re-
sult, i,(u;). Then, draw a realization from it, say,
:.('l.l'z).




4. Loop over all n nodes until each node is informed
with a simulated grade value, (). i=1...n

Multiple simulations may be generated by repealing
the entire sequential process with a different random
number seed for both the path and the drawing from
the conditional distribution.

This sequential algorithm is a completely general
probabilistic approach for stochastic simulation of dis-
crete and continuous variables [Devroye, 1986: Journel
and Alabert, 1989]. The derivation of the conditional
distribution may also be performed with a simple krig-
ing of normal scores in the Gaussian case [Journel and
Alabert, 1989],

These simulated realizations of data-support volumes
can be very useful:

® They provide a means to consider different SMU
volume support sizes without restrictive change of
support assumptions. The simulated composite
values can be averaged to an SMU grade. Repeat-
ing this many times provides a block distribution
that does not require prior knowledge of a variance
reduction factor f.

¢ The fluctuation of the realizations provides a mea-
sure of uncertainty. A partial measure of uncer-
tainty is available from straight IK; however, simu-
lation provides a joint measure of uncertainty over
volumes different that the composite data-support
volumes.

» They provide a way to predict the mill head grade
variation with time. This can be useful to design
blending facilities.

CONCLUSIONS

We have attempted to describe one particular ap-
proach to orebody modelling based on indicator krig-
ng with a maximum amount of geological input in the
of anisotropy and geological rocktype models. De-

ailed examples from the Porgera deposit in Papua New
Guinea illustrate the concepts discussed.
Acceptable results in terms of realistically represent-
ng the orebody and matching production after mine
start-up have been obtained when special care was first
taken to account for geological constraints and then the
eostatistical implementation details.
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APPENDIX A: A TEST FOR THE VALIDITY OF
PARAMETRIC METHODS

Parametric methods like disjunctive kriging, multi-
Gaussian kriging, lognormal kriging, and Gaussian
based simulation procedures are often proposed as al-
ternatives to indicator methods. A simple check ex-
ists for checking the validity of the multivariate nor-
mal assumption which underlies all of these methods.
The check consists of computing the normal scores vari-
ogram, theoretically deriving the corresponding indica-
tor variograms, computing the experimental indicator
variogram models, and then evaluating the closeness
of the two. A large deviation implies that parametric
methods based on the Gaussian assumption are inap-
propriate,

Computing the normal scores variogram is straight-
forward; the variogram is computed on the standard
normal score transforms of the data [Isaaks and Srivas-
tava, 1989, page 469].

The theoretical derivation of the corresponding in-
dicator variograms is given in Xiao, 1985 and also
described with source code in Deutsch and Journel,
1962. For any given quantile, or indicator cutoff, the
Gaussian-based indicator variogram may be computed
by integrating the bivariate Gaussian distribution.

One property of the multivariate Gaussian distribu-
tion is that the indicator variograms show symmetric
destructuration around the median, e.g., the indicator
variogram for the 10th percentile is the same as the
90th percentile. Moreover, the median indicator vari-
ogram presents the most spatial structure, i.e., all other
indicator variogram rise more steeply to their sill val-
ues,

It would be straightforward to evaluate paramel-
ric methods based on multivariate distributions other
than the Gaussian distribution. The same procedure
could be followed; the difference would be the alternate
derivation of the theoretical indicator covariance.

APPENDIX B: ALTERNATIVE IK
IMPLEMENTATION

The advantage of the traditional IK approach docu-
mented above is that it allows the straightforward in-
corporation of soft data and constraint intervals. The
disadvantages are that resolution is lost within the
classes of the distribution, selecting the appropriate
cutoffs is not straightforward, and a variogram model
must be inferred for each cutoff. The alternative ap-
proach described below attempts to overcome these dis-
advantages but the implementation is not straightfor-
ward when soft data and constraint intervals are used,

The idea is to reset the cutoffs defining the estimated
distribution locally to the data values falling into the
local neighborhood. Points on the cumulative distri-
bution function are estimated where data are available
rather than at artificial class boundaries. Figure 7 il-
lustrates this approach.

As shown on Figure 7 there is no probability to be
less than the minimum data value or to exceed the max-
imum data value; however, there is certainly a chance
to encounter them. The same procedure as the conven-
tional IK approach can be adopted between classes and
beyond the minimum and maximum data values.

Some practitioners who use the conventional ap-
proach attempt to use many classes so that resolution
of high values is not lost. This solution causes the krig-
ing to become tedious and also creates many order re-
lations problems. This alternative approach eliminates
both or these problems, i.e., we have detailed resolution
in the upper tail of the distribution and order relations
are seldom found because the indicator coding changes
with every kriging.

The output is not as neat as the conventional ap-
proach, i.e., the number of cutoffs and the actual cut-
offs can change at every point being estimated. This is
viewed as an advantage because it gives a better indica-
tion of what data are being used. Note: even with the
conventional approach the cutoffs change after volume
support correction; therefore, the probability of exceed-
ing an interesting cutoff is not directly available even if
the interesting cutoff was chosen as one of the original
cutoffs,

This approach requires that the variogram model be
defined with the same number and type of nested struc-
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Indicator Kriging with Five Data
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‘Figure 7: An illustration of IK with the cutoffs identified
to the (five) data values retained in the neighborhood.

tures for all cutoffs. The idea is to model the indicator
variograms, that have been normalized to a sill of 1.0,
- where a significant change in the spatial structure can
be identified. The model parameters are then linearly
interpolated between cutoffs. The practitioner must en-
sure consistency in the models, a “discontinuity” can be
explicitly handled by adding a cutoff in the variogram
definition. Note that a completely different variogram
structure for a certain range of the data values can be
‘handled by setting certain coefficients to zero.

‘Both methods can benefit from an iterative matrix
solution method after the first matrix inversion. An it-
erative method will be especially quick if the variogram
model changes continuously from cutoff to cutoff. Of
‘course, if constraint intervals are being used then the
size of the kriging system could change at different cut-
offs. This will reduce the efficiency of an interative
‘matrix solver,



