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Abstract
Significant uncertainty exisls in the de[ailed 3-D distribution of
Iithofacies, porosity, and permeability in every reservoir. Un-
tfcrslanding and modeling the heterogeneous 3-D distribution of’
these rock properties is critical for improved oil recovery and
reservoir management. Geostatistical techniques are being in-
creasingly used to generate alternative heterogeneous 3-D reser-
voir models that are consistent with the available data.

Although a large number of’stochastic reservoir models or
rwli:a[iom may be available, a small number of realizations are
considered in practice. Due to computer limitations, it is only
possible to visualize and perform fine-scale full-field flow sim-
ulation on a limited number of realizations. Techniques are re-
viewed in this paper for ranking a suite of geostatistical realiza-
tions so that Imv-side, expected, and high-side realizations may
be reliably chosen. Detailed analysis/flow simulation may then
bc performed on these realizations that somehow bound the un-
certainty in the reservoir. Reservoir management is improved
when expecfed and bounding cases are considered rather than
using a Iimitcd number of “’random” realizations.

This paper reviews a number of methods for ranking geosta-
[istical reservoir models. These methods may be classified into
three categories. The first category includes statistical melh-
ods such as simple statistics, 3-D measures of’connectivity, and
connectivity [o specific well locations. Methods in the second
class arc based on approximations to flow simulation, e.g., ran-
dom walk-type results. The third category is for flow-simulation
based methods for a simpler process than that being considered
for improved oil recovery, e.g., tracer simulation and flow sim-
ulation with coarsened models. The applicability of a number
ot ranking methods is illustrated with a small example.

Reservoir Models

there are multipleThere is no unique ranking index when
flow response variables and no ranking measure is perfect. Nev-
ertheless, the value of ranking realizations will be quantified by
examining the expected loss knowing an economic loss function
and the true distribution of uncertainty.

Introduction
The primary objective of tbe application of geostatistical tools
for reservoir modeling is to create realistic numerical geological
models or realizations of the 3-D spatial distribution of litho-
facies, porosity, and permeability. An often disturbing fact of
geological reservoir modeling is that there are alternative real-
izations that honor all of the available data equally well and yet
yield different reservoir performance predictions. In fact, it is
oflen advertised that “a different realization can be obtained by
simply changing a random number seed”.

A fundamental principle of geostatistics is that of dam inte-
gration, i.e., all known data should be honored “by construction”
and not Icft to chance. Of course, this is not always possible;
it is difficult to constrain detailed 3-D geological realizations to
seismic and historical production data. We are restricting our-
selves to plausible realizations. There are times when certain
realizations would be rejected on the basis of familiarity with
the reservoir or data not used in the geostatistical modeling such
as production-related historical observations. Wc are not con-
sidering the rejects; only those realizations that meet all basic
requirements of reasonableness are considered.

Exact prediction / decision making would require exhaus-
tive knowledgcof the spatial distribution of porosity and perme-
ability, At any spccitlc instant in time, there is such a single true
distribution of petrophysical properties. This true distribution
was created by the complex interaction of many different chemi-
cal, physical, and biological processes over geological time and
would be accessible only through exhaustive sampling. In all
practical situations, the unique true distribution will remain un-
known.

This paper addresses the uncertainty due [o incomplete in-
formation. We do not consider uncertainty due to ( 1) the vol-
ume support or scale difference between core measurements
and geological modeling cells, (2) tbe limited flexibility of our
geostatistical modeling techniques to reproduce complex non-
linear features, or (3) numerical approximations in the subse-
quent flow simulator.
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Ranking Realizations
An excellent reference on stochastic modeling is available in [he
paper by Haldorscn and Damslethl. The idea of ranking stochas-
tic realizations has been around for a while and was first pub-
lished in [he context of stochastic reservoir modeling in 19922.
The early paper of Berteig3 presents an example of uncertainty
quantification.

Consider the case where we are interested in the economic
ultimate recovery (EUR) of a given improved oil recovery scheme,
The true EUR remains unknown until, perhaps, some time in
the future when the reservoir is depleted. The uncertainty in the
EUR may be estimated, however, by the following sequence of
steps

1.

2.

3.

generate L geostatistical realizations of the rock and fluid
properties {Z(lJ(U),U E A} ,1 = 1,...,L,where z is a
vector random variable representing Iithology, porosity,
and permeability,

perform a detailed flow simulation representing the actual
recovery process on each realization 1 = 1, . . . . L, and

construct a histogram of the response variable of interest.
((1), 1 = 1,..,, ~ where <(1) is; for example, the EUR of
the l’th geostatistical realization.

Risk-qualified decisions can be made knowing this uncertainty
and loss functions that quantify the impact of making a mistake
for a given error. This risk-qualified decision making requires L
to be large enough to adequately define the histograms of each
critical response variable. Given the complexity of simulating
an improved recovery scheme, this may be a prohibitively large
number of realizations,

The ranking of the realizations from highest to lowest EUR
r-t(l), 1 = 1, . . . . L may be determined from the EUR of each
realization. For example, if r< (26) = 1 then realization num-
ber 26 is the realization with the lowest EUR and if r-t (7) = L,
then realization number 7 leads to the lowest EUR. The central
idea behind ranking realizations is to use some simpler measure
to rank realizations and then run the full flow simulation with
fewer realizations, say, the 5%40w, 50%-expecred, and 95%-
Irigh ones. This would allow bounding the uncertainty without
performing a large number of fine-scale flow simulations.

The simpler measure is considered a good ranking statistic
when it correctly identifies low and high realizations. That is,
for ranking statistic k (ranking index denoted rk (1)), the good-
ness of a ranking statistic is measured through the correlation
between r< (1) and rk(l), 1 = 1,....L, Many flow responses
depend on the connectivity of the reservoir-quality rock; there
are many measures of connectivity that may be quickly calcu-
lated without running a full simulator. The goodness of a rank-
ing measure can only be validated by running the detailed flow
simulations (there is no longer a need for the ranking measures
at that point). Nevertheless, this rigorous validation would be
appropriate until confidence in certain ranking measues is estab-
lished,

Before describing a number of ranking measures, consider
some cases where ranking geostatistical realizations is problem-
atic:

1.

2.

3.

when each realization leads to nearly the same answer –
that is, when the presence of stochastic heterogeneities is
more important than the specific differences between the
realizations,

when the aspect of uncertainty being assessed is easy to
calculate – for example, the uncertainty in pore volume
may be directly assessed by calculating the pore volume
of all realizations,

when there are many independent reservoir responses of
interest – that is, no single ranking index could lead to a
unique reliable ranking.

There are times, however, when significant professional or CPU
[ime is required to evaluate each realization and the number of
realizations considered must be limited. In these situations, it is
worthwhile to consider ranking the realizations [o limit the num-
ber of fine scale simulations and yet to obtain an idea of uncer-
tainty in the flow response.

Almost all flow response variables of interest depend on some
measure of continuity, connectivity, or tortuosity. The ranking
tools increase in complexity and required knowledge of the spe-
cific problem; more information must be known about the reser-
voir and production plan to rank realizations based on the more
complex ranking measures. Certain statistical ranking measures
do not even require knowledge of the well locations,

The statistical ranking measures require each cell in the geo-
statistical model to be assigned a ner indicator:

{

1, if location u is nel or reservoir quality
i(u) =

O, otherwise
(1)

in practice, this indicator is defined on the basis of some com-
bination of(I) the Iithofacies, (2) a porosity threshold, and (3)
a permeability threshold, Sensitivity studies should be consid-
ered when there are no evident thresholds for porosity and per-
meability.

Ranking with Statistical Measures The simplest approach to
rank realizations is with simple summary statistics, Given j =
1,. ... N geostatistical cells in the reservoir model, onc could
consider the net-to-gross ratio for each realization, 1 = 1, ... , L:

(2)

the net pore volume:

where i(~)(uJ) is the net indicator( I ), @J(l)(uj ) is the porosity for
cell j and V(uj) is the gross volume of cell j. Another simple
summary statistic would be the the average permeability:

(4)
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where /c[i)(UJ ) is [he horizontal permeability for cell j.

Realizations may be ranked according 10 static measures of
Seadngfault

continuity. One measure of this type is available by determin- Hormnt.s Prodwer

ing the se[s of net geological modeling cells that are connected .

in 3-D space (e.g., as available in Stratamodel’s SGM program
with the GEOBODY option). The twe-step procedure for deter- ,.” >Y

mining GEOBODIES arc ( 1) assign each cell in a 3-D model a 1
or a ()code depending on whether the cells are reservoir qualify

6

—’——————
or not, and (2) scan through the 3-D binary model aggregating

Water hqectof

those reservoir quality cells that are conrmcted. The result will
bc N,,,.,,MU GEOBODIES or connected bodies each with an as-
sociated volume \‘ v,q(wbd~, j.j = 1, > I ,qeoboriy.

lrmal Wider 0+ Contact

Thedistribu[ion of GEOBODY volumes can be used f’orrank-
ing in a number of ways including (1 ) the fraction of reservoir Figure I: Example 2-D flow Scenariowith ver[ical water injec[rrrand
quality CCIISwithin the firs[ n GEOBODIES (any arbitrary num- horizontal producing well
bcrcan bc cbown): the higher [his fraction the more “conncctcd”
[he model, (2) [he number of GEOBODIES that include 75% (or
some other arbitrary fraction) of the to~al reservoir quality cells,
or (3) the totuosi[y (defined as (he surface area to volume ratio)
may also bc calculated and used for ranking.

If the well locations arc known, the conncc[ed pore volume
within some radius could rank the available realizations, The
volume conncc[cd [o a WC]}Ioca[ion is easily calculated once
[he GEOBODIES have been detcrmirred. The number of cells
connected 10u well Iocalion in 3-D space ranks the realizations:
[he larger [hc number of conncc[cd cells the “higher” [he model
ranks.

The cumulative volume connec[ed between multiple wells,
I’orcxamplc, the volumcof ~~ercells connected be[ween injector-
produccr well palterns could also bc used for ranking realiza-
tions. This cotrld bc calculamd by determining which GEOBOD-
IES arc jointly intersected by bo[h wells and ihcn limiting [he
contribution within some practical drairragc radius.

Ranking with Simple Flow Models There arc random walk
algorithms that measure “dynamic” continuity between inject-
ing and producing locations, These methods often call for a so-
lution to [he pressure frcld (single phase flow) given assumed
well rates. Particles are [hen tracked through the media and the
distribution of “times” or “lenglhs” between injecting and pro-
ducing wells provides a measure of connectivity that could be
used for ranking.

There arc other relatively simple and fast flow models in-
cluding (1 ) [racer simulation, (2) simulation bascdon a network
of I-D stream tubes, and (3) a water flood simulation in lieu of a
more complex miscihlc or compositional-type simulation. The
time of first water arrival is likely a good measure for tbe break-
through of other miscible components in a more complex pro-
Ccss.

Another ranking approach is to use the correct physics or
Ilow equations but with the geological models scaled to such
a coarse resolution that [be computer time is acceptable. The
coarseness of[hc underlying grid will compromise the direct use-
fulness of [he rcsul[s. Neverlbclcss, the relative ranking of [hc
rcsul(s may bc used to rank [he underlying geological realiza-
tions.

An Example

For illustration, a 2-D cross sectional example will be shown
to illustrate the ranking measures described above. Although
the example is synthetic, it shares many features with realistic
rescrvoircxamples. This example is fashioned after a fairly high
net-to-gross (about 807( ) fluvial environment with discontinu-
ous shale remnants. The shales have no cffec[ive porosity or
permeability. The sand/shale (Iithology), porosi[y, and perme-
ability distributions are constructed to honor tbe profile of’prop-
erties at the water injection well and the horizontal production
well, see Figure 1, This representative cross section is 1000 me-
ters long (200 -5 meter blocks) and abou[ 20 meters thick (40
0.5 meter blocks). In practice, this is one section of many con-
nected (o the horizontal production well.

The flow charactcris[ics of [his cross section are not known
exactly duc to uncer[ain[y in the geologic model. 250 realiza-
tions of Ii[hology, porosity, and pcrmeahility were generated and
flow simulation performed on all 250 realiza~ions, The Ilow re-
sponse variables of interest are ( 1) the [imc of first water arrival
at (bc horizontal producer, (2) [he water cut after [he injcc[ion of
one pore volume of water, and (3) (hc Irac{ion of oil recovered
when the water cut reaches 90%, see below,

The 250 rcali~a[ions of Iithology were constructed with se-
quential indicator simulation. Although [he indicator data a[
the well locations is honored; the average shale proportion in
each realization varies due to ergodic fluctuations, sec Figure 2.
To be realistic, the verlical variogram range was considered known
at 1.0 m and the hori~,on[al variogram mnge was considered to
be follow a triangular distribution (minimum of 50 m mode of
100 m and maximum of 250 m).

Porosity models were genera[ed with sequential Gaussian sim-
ulation for the sand lithology only; shales were assigned zero ef-
fective porosity. The 250 porosity realizations were constrained
to the well data, a histogram from the well data, a known verti-
cal variogram, and an uncertain horizontal variogram. Perme-
ability was assigned [o each realization with simulated anneal-
ing to honor the permeability at the WCIIlocations, a porosity-
permeahility cross plot (0.6 correlation coefficient), and a vari-
ogram model.
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Number of Data 250

maan 0.198
std dev. O029

1

III
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Shale Proporlton

Figure 2: Histogramof shale proportion in the 250 geosta[istical real-
izations,

Flow Modeling ECLIPSE5 was used to perform a water flood-
ing simulation at the detailed resolution (8000 blocks). A sin-
gle vertical injector and a horizontal producer perpendicular to
the flow direction were assumed. Both wells were assumed to
be pressure controled. The initial water-oil contact is shown on
Figure 1 and realistic water and oil relative permeabilities were
chosen, In this case it is possible to perform the detailed flow
simulation on all 250 realizations within a reasonable time. In
general, with larger 3-D models and a greater number of wells,
it would only be possible to consider a limited number of flow
simulations.

The following five flow response variables were used to sum-
marize the full flow simulation responses:

1. ~1 = breakthrough = the fractional pore volume injected
at water breakthrough to the horizontal producing well,

2. & = ultimate recovery= the recovery when the water cut
at the producer exceeds 90%, and

3. <3 =Jrml rate = the total fluid rate when the water cut at
tbe producer exceeds 90%.

4. <~ = oil rate = the oil production rate at breakthrough,

5. <5= intermediate recovery= the recovery after 2 pore vol-
umes of water injection,

Histograms of the 5 response variables for all 250 realizations
are shown on Figure 3. The relatively large variance of each re-
alization is due to the 2-D (versus 3-D) example and the hetero-
geneous distributions of rock properties. A priori we expect this
large variance to make ranking easier and more important,

The 250realizations maybe ranked according to each of these
five response variables. Table 1 shows the correlation between
the rdnking indices provided by ~a, i = 1,...,5. Some remarks:
( I ) the negative correlation between Tfl (breakthrough) and r<,

(final rate) is explained by noting that the faster the breakthrough
the laster the well is shut in and the lower the total fluid rate
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Figure 3: Histogramof the response variables for all 250 geostatistical
realizations.
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Ilgurc 4: Scat[erplot between the ranking index due m response 5 (in-
tcrmedia[e recovery) versus [he ranking index due to response 3 (final
rate), The linear correlation coefficient is 0.39.

I Response Variable Ranking

7’(2
1.00 0.15 0.21 0.78

r( 3 I .00 0.98 0.39

T(4 1.00 0.46

T(5 1.00

Table 1: Correlation coefficients between [he ranking indices provided
by the tive reference flow simulation responses.

will bc at that time, (2) the strong positive correlation between
r{:, (final rate) and T~4 (oil ra[e) is explained by noting [hal both
<:] and <,i arc measures of effective permeability of the system,
and (3) the good correlation be(ween rc, and T(5 is explained by
noting tha[ <2 and <5 are both measures of oil recovery at two
different times. The sca[terplots between the ranking measures
should be checked to ensure that a few outlier points are not de-
stroying an otherwise good correlation. As an example, this is
not [he case on Figure 4.

An important point to note is that, in general, there is poor
correlation between these reference ranking measures. The im-
plication is tha[ there is no unique ranking. A differcn[ ranking
will have to bc used for each response variable of interest.

Figure 8 (a[ the end of the paper) shows gray scale maps
of’the pcrmetibility for the low and high ranking realization for
all five response variables. The high ranking realizations have
more connected dark pixels (high permeability). The results ap-
pear reasonable, i.e., the realization with the fastest breakthrough
(upper right) has a connected high permeability streak from the
injection well.

Statistical Ranking Measures

T.vI 7-’s2 r83 l-s4 rsb Tse
0.16 0.15 0.07 0.19 0.00 0.18
0.38 0.37 0.00 0.32 0.27 0.20
0.51 0.52 0.32 0.43 0.24 0.36
0.54 0.55 0.32 0.46 027 0.39
0.48 0.46 0.12 0.42 0.40 0.32
0.41 0.41 0.17 0.36 0.24 0.29

&

0.27
0,41
0.44
0.38
0.32

Table 2: Correlation hctwecn statistical rmking measures and refer-
ence flow response ranking measures

Statistical Ranking Measures For brevity, the results from a
limited number of statistical ranking measures are shown here:

I. r., = net to gross ratio (2)

2. r,, = net pore volume (3)

~, ~., = arithmetic average of permeability (4)

4. r,q = total connected volume within 5 GEOBODIES

5. r., = total volume connected to the injecting and produc-
ing well locations

6. r,. = total volume connected between the injecting and
producing wells

Table 2 shows the correlation between the true ranking and the
statistical ranking. Some remarks: ( 1) the net-to-gross ratio is
the best overall ranking measure, (2) the total connected volume
provides the best ranking for breakthrough, (3) the ranking pro-
vided by the average permeability and connectivity to well loca-
tions do not perform well in this case, and (4) Ta,,g (the ranking
based on the average of r.,, i = 1, . . . ,6) does not perform bet-
ter than the net-to-gross (r-,, ) or connectivity ranking (r-,,).

Flow-Based Ranking Measures The realizations were scaled
up so that the flow simulation could be run much faster. A 16:1
scale-up resulted in a 24:1 savings in CPU time. Upscaling of
absolute permeability was performed by applying no-flow bound-
ary conditions and solving the single-phase steady-state flow equa-
tions. No changes were made to the relative permeability curves.
The coarse-scale flow response variables are not considered trust-
worthy due to numerical dispersion; however, the realization rank-
ing provided by these responses performs as well as the statis-
tical ranking measures, see Table 3. The poores[ correlation is

for the breakthrough time; the connectivity of the high and low
permeability streaks are not captured in the scale-up while the
average permeability characteristics are maintained fairly well
(probably due to the single-phase flow-based upscaling).

Figure 5 shows (hc correlation between coarse and tine scale
flow responses for a number of scale-up ratios. There is surpris-
ingly little difference between the results at 64: I and 16:1. The
correlation drops significantly at a 256:1 scale-up ratio.
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breakthrough 0.27
ultimate recovery 0.38
final rate 0.56
oi I rate 0.56
intermediate recoverv 0.40

Table 3: Correlation between reference flow response ranking and
coarse scale flow response ranking

1,0 --------
1

-*

012

$008

2
t

0.C4

0.00

0 400 Elm 12cm lam

Ukmale Recwer!

0.0
I I I 1

256:1 64:1 16:1 4:1 1:1

Scale up Ratio

Figure 5: Correlation be[ween the reference flow response ranking
and coarse scale flow response ranking versus the scale up ratio.

Decision Making with Loss Functions One motivation for rank-
ing realizations is to pick fcnv-side, expected, and high-side real-
izations, Almost always we want to know the cumulative prob-
ability to assign to the low and high realizations, e.g., is the low
realization the 170quantile or the 10% quantile? Less often, we

want to use a limited number of realizations to define the full
CDF of the response variable so that optimal decisions can be
mrzrle5’7.

Figure 6 illustrates this idea with the distribution of ultimate
recovery. The histogram and CDF of the 250 ultimate recov-
ery values are shown at the top. An assumed loss function is
shown in the center of Figure 6. This loss function quantifies
the economic impact of estimating too much or too little recov-
ery. This loss function was chosen arbitrarily for this example.
Finally, knowing the CDF and the loss function we can calculate
the expected loss associated to any estimate of ultimate recovery
(bottom of Figure 6). Note that the optimal estimate of ultimate
recovery is 770 (arbitrary units).

It is possible to use a limited number of realizations, cho-
sen by some ranking measure, to define some points on the CDF
curve. Assuming some interpolation (say, linear) between these
CDF points we can make the same L-optimal estimate. Of course,
this estimate is poorer than we would get with the procedure
shown in Figure 6 since the ranking is not perfect and the inter-
polation between the known CDF points is an approximation.
Figure 7 illustrates the “Ranked” approximation to the true calf.
In this case, the net-to-gross ratio was the best statistical rank-
ing for the ultimate recovery. The L-optimal estimate from the
“Ranked” CDF is 800 (versus 770 from the true distribution)
and the expected loss (read from the true curve) increases by
1,1% from 53.29 to 53.87. Depending on the units of the loss
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Figure 6: Histogram of the ultimate recovery,CDF of the ultlma[ere-
covery, hypothetical loss function, and loss for each estimate, the L-
optimal estimate is 730.

function (dollars in all practical problems), this amount quan-
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Figure 7: CDF and expcctcd loss for the true distribution of ultimate
recovery, the approximation obtained when using the three ranked re-
ailzatmns, and the approximation ohtalned using the first three realiza-
tions.

tiftes the value of running more flow simulations to more pre
cisely quantify uncertainty.

Figure 7 also shows an estimated CDF and expected loss curve
labeled “Random”. In this case, the ftrst three reaii~ations were
taken, sorted from smallest [o largest, and then assigned to the
25%, 509+ and 75’%quarrtile. Nom that the CDF deviates con-
siderably from the true cdf and the L-optimal estimate is 900
(versus 770from the [rue distribution) with an expected loss (read
from the true curve) of 64.80 (a 20%1from the [rue value). Note
thal [he ranked CDF is closer to the true CDF and the L-optimal
es[imalc is better. Considering loss functions allows a value to
be placed on ranking the rcidizatimrs.

Discussion

This paper has made a number of points regarding the ranking
ofgeostatistical realizations:

Ranking and selecting geostatistical realizations is neces-
sary since it is often impossible to perform reservoir sim-
ulation on a large number of geostatistical realizations.

Ranking must be performed according to a scalar quan-
tity; assumptions must be made to rank realizations when
[here are multiple flow response variables.

Ranking realizations is important when there is a signif-
icant variation in the response variable, e.g., the range in
the breakthrough time was from 0.17 to 0.5 pore volumes
of water injected.

For the example presented here the net-to-gross ratio is
a good ranking index. Flow simulation at a coarse scale
also worked well even with scale-up ratios as high as 64:1,

The use of loss functions and the expected loss is an ap-
proach that could be used to measure the value of rank-
ing realizations or to justify the CPU-expense of running
multiple fine-scale detailed flow simulations.

Future Work

Any fast flow simulation, regardless of implicit assumptions, is
a good candidate for ranking. Promising techniques based on
streamlines and random walk simulation have not been demon-
strated in [his paper. Although no ranking measure can over-
come the non-tzniquencss inherent with multiple response vari-
ables, these techniques have potential for improved ranking.

A greater number of case studies are required to determine
those ranking measures which are simple and robust. When pos-
sible, wc may want to avoid [he [ask of ranking reaii~.a[ions and
pay the CPU-cost of running more detailed Ilow simulations. In
this case, we might still consider ranking the realizations and
then running a Iimi[ed number of evetz more detailed [low sin]-
ulations. Given the significant geological he[crogcneity and sig-
nificant size of most reservoirs (relative to the scale ofcoredata),
the related problems of scale-up and ranking realizations will be
the subject of future work.

Nomenclature

7=
h=

—

;:
kh =
i ——

~=
1=
r((l) =
<(1) =

semivariogram
lag separation vector
location coordinates vector
pososity
horizontal permeability
node index
node index
realization number index
rank order of (/) according to ~
flow response variable
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Figure 8: Lowest and highest ranking realizations for each of [hc five response variables. The gray scale maps are of pcrmcabi lity (whim is low and
black is high permeability). In all cases there are more high permeability cells in the high ranking realizations.
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