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Abstract

Significant uncertainty exists in the detailed 3-D distribution of
lithofacies, porosity, and permeability in every reservoir. Un-
derstanding and modeling the heterogeneous 3-D distribution of
these rock properties is critical for improved oil recovery and
reservoir management. Geostatistical techniques are being in-
creasingly used to generate alternative heterogeneous 3-D reser-
voir models that are consistent with the available data.

Although a large number of stochastic reservoir models or
realizations may be available, a small number of realizations are
considered in practice. Due to computer limitations, it is only
possible to visualize and perform fine-scale full-field flow sim-
ulation on a limited number of realizations. Techniques are re-
viewed in this paper for ranking a suite of geostatistical realiza-
tions so that low-side, expected, and high-side realizations may
be reliably chosen. Detailed analysis/flow simulation may then
be performed on these realizations that somehow bound the un-
certainty in the reservoir. Reservoir management is improved
when expected and bounding cases are considered rather than
using a limited number of “random’ realizations.

This paper reviews a number of methods for ranking geosta-
tistical reservoir models. These methods may be classified into
three categories. The first category includes statistical meth-
ods such as simple statistics, 3-D measures of connectivity, and
conneclivity to specific well locations. Methods in the second
class are based on approximations to flow simulation, e.g., ran-
dom walk-typeresults. The third category is for flow-simulation
based methods for a simpler process than that being considered
for improved oil recovery, e.g., tracer simulation and flow sim-
ulation with coarsened models. The applicability of a number
of ranking methods is illustrated with a small example.
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There is no unique ranking index when there are multiple
flow response variables and no ranking measure is perfect. Nev-
ertheless, the value of ranking realizations will be quantified by
examining the expected loss knowing an economic loss function
and the true distribution of uncertainty.

Introduction

The primary objective of the application of geostatistical tools
for reservoir modeling is to create realistic numerical geological
models or realizations of the 3-D spatial distribution of litho-
facies, porosity, and permeability. An often disturbing fact of
geological reservoir modeling is that there are alternative real-
izations that honor all of the available data equally well and yet
yield different reservoir performance predictions. In fact, it is
often advertised that “‘a different realization can be obtained by
simply changing a random number seed”.

A fundamental principle of geostatistics is that of data inte-
gration, i.e., all known data should be honored **by construction™
and not left to chance. Of course, this is not always possible;
it is difficult to constrain detailed 3-D geological realizations to
seismic and historical production data. We are restricting our-
selves to plausible realizations. There are times when certain
realizations would be rejected on the basis of familiarity with
the reservoir or data not used in the geostatistical modeling such
as production-related historical observations. We are not con-
sidering the rejects; only those realizations that meet all basic
requirements of rcasonableness are considered.

Exact prediction / decision making would require exhaus-
tive knowledge of the spatial distribution of porosity and perme-
ability. Atany specific instant in time, there is such a single true
distribution of petrophysical properties. This true distribution
was created by the complex interaction of many different chemi-
cal, physical, and biological processes over geological time and
would be accessible only through exhaustive sampling. In all
practical situations, the unique true distribution will remain un-
known.

This paper addresses the uncertainty due Lo incomplete in-
formation. We do not consider uncertainty due to (1) the vol-
ume support or scale difference between core measurements
and geological modeling cells, (2) the limited flexibility of our
geostatistical modeling techniques to reproduce complex non-
linear features, or (3) numerical approximations in the subse-
quent flow simulator.
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Ranking Realizations
An excellent reference on stochastic modeling is available in the
paper by Haldorsen and Damsleth! . The idea of ranking stochas-
tic realizations has been around for a while and was first pub-
lished in the context of stochastic reservoir modeling in 19922
The early paper of Berteig3 presents an example of uncertainty
quantification.

Consider the case where we are interested in the economic

ultimate recovery (EUR) of a given improved oil recovery scheme.

The true EUR remains unknown until, perhaps, some time in
the future when the reservoir is depleted. The uncertainty in the
EUR may be estimated, however, by the following sequence of
steps:

1. generate L geostalistical realizations of the rock and fluid
properties {z()(u),u € A},l = 1,..., L, where z is a
vector random variable representing lithology, porosity,
and permeability,

2. perform a detailed flow simulation representing the actual
recovery process on each realization! =1,..., L, and

3. construct a histogram of the response variable of interest,
E(1),t=1,..., L where £(1) is, for example, the EUR of
the {’th geostatistical realization.

Risk-qualified decisions can be made knowing this uncertainty
and loss functions that quantify the impact of making a mistake
for a given error. This risk-qualified decision making requires L
to be large enough to adequately define the histograms of each
critical response variable. Given the complexity of simulating
an improved recovery scheme, this may be a prohibitively large
number of realizations.

The ranking of the realizations from highest to lowest EUR
re(1),l = 1,..., L may be determined from the EUR of each
realization. For example, if r¢(26) = 1 then realization num-
ber 26 is the realization with the lowest EUR and if r¢(7) = L,
then realization number 7 leads to the lowest EUR. The central
idea behind ranking realizations is to use some simpler measure
to rank realizations and then run the full flow simulation with
fewer realizations, say, the 5%-low, 50%-expected, and 95%-
high ones. This would allow bounding the uncertainty without
performing a large number of fine-scale flow simulations.

The simpler measure is considered a good ranking statistic
when it correctly identifies low and high realizations. That is,
for ranking statistic k£ (ranking index denoted ry (1)), the good-
ness of a ranking statistic is measured through the correlation
between r¢({) and 7(I),! = 1,...,L. Many flow responses
depend on the connectivity of the reservoir-quality rock; there
are many measures of connectivity that may be quickly calcu-
lated without running a full simulator. The goodness of a rank-
ing measure can only be validated by running the detailed flow
simulations (there is no longer a need for the ranking measures
at that point). Nevertheless, this rigorous validation would be
appropriate until confidence in certain ranking measues is estab-
lished.

Before describing a number of ranking measures, consider
some cases where ranking geostatistical realizations is problem-
atic:
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1. when each realization leads to nearly the same answer -
that is, when the presence of stochastic heterogeneities is
more important than the specific differences between the
realizations,

2. when the aspect of uncertainty being assessed is easy (o
calculate — for example, the uncertainty in pore volume
may be directly assessed by calculating the pore volume
of all realizations,

3. when there are many independent reservoir responses of
interest — that is, no single ranking index could lead to a
unique reliable ranking.

There are times, however, when significant professional or CPU
time is required to evaluate each realization and the number of
realizations considered must be limited. In these situations, it is
worthwhile to consider ranking the realizations to limit the num-
ber of fine scale simulations and yet to obtain an idea of uncer-
tainty in the flow response.

Almost all flow response variables of interest depend on some
measure of continuity, connectivity, or tortuosity. The ranking
tools increase in complexity and required knowledge of the spe-
cific problem; more information must be known about the reser-
voir and production plan to rank realizations based on the more
complex ranking measures. Certain statistical ranking measures
do not even require knowledge of the well locations.

The statistical ranking measures require each cell in the geo-
statistical mode! to be assigned a ner indicator:

i(u) = { é:

in practice, this indicator is defined on the basis of some com-
bination of (1) the lithofacies, (2} a porosity threshold, and (3)
a permeability threshold. Sensitivity studies should be consid-
ered when there are no evident thresholds for porosity and per-
meability.

if location u is net or reservoir quality
otherwise

(1

Ranking with Statistical Measures The simplest approach to
rank realizations is with simple summary statistics, Given j =
1,..., N geostatistical cells in the reservoir model, one could
consider the net-to-gross ratio for each realization,! = 1, ..., L:

N

1
ntg(l) = 5 2 i (wy) )
i=1

the net pore volume:

{O(uy) - oM (w)) - V()

3

| &
npu(l) = N

J

where i¥) (u;) is the netindicator (1), (") (u;) is the porosity for
cell 7 and V (u;) is the gross volume of cell . Another simple
summary statistic would be the the average permeability:

Z;"zl i (uy) - kW (u;)
Z]N:1 i (uy)

k(1) = 0)
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where k'Y (u;) is the horizontal permeability for cell .

Realizations may be ranked according to static measures of
conlinuity. One measure of this type is available by determin-
ing the sets of net geological modeling cells that are connected
in 3-D space (e.g., as available in Stratamodel’s SGM program
with the GEOBODY option). The two-step procedure for deter-
mining GEOBODIES are (1) assign each cellina 3-D model a 1
or a 0 code depending on whether the cells are reservoir quality
or not, and (2) scan through the 3-D binary model aggregating
those reservoir quality cells that are connected. The result will
be Nyoovoay GEOBODIES or connected bodies each with an as-
sociated volume Viyoopody. 7 = 1, - Ngeabody-

The distribution of GEOBODY volumes can be used for rank-
ing in a number of ways including (1) the fraction of reservoir
quality cclls within the first n GEOBODIES (any arbitrary num-
bercan be chosen): the higher this fraction the more “connected”
the model, (2) the number of GEQOBODIES that include 75% (or
some other arbitrary fraction) of the total reservoir quality cells,
or (3) the totuosity (defined as the surface area to volume ratio)
may also be calculated and used for ranking.

If the well locations are known, the connected pore volume
within some radius could rank the available realizations. The
volume connected to a well location is easily calculated once
the GEOBODIES have heen determined. The number of cells
connected 1o a well location in 3-D space ranks the realizations:
the farger the number of connected cells the “higher’” the model
ranks.

The cumulative volume connected between multiple wells,
forexample, the volume of nief cells connected between injector-
producer well patterns could also be used for ranking realiza-
tions. This could be calculated by determining which GEOBOD-
IES arc jointly intersected by both wells and then limiting the
contribution within some practical drainage radius.

Ranking with Simple Flow Models There are random walk
algorithms that measure “dynamic” continuity between inject-
ing and producing locations. These methods often call for a so-
lution to the pressure ficld (single phase flow) given assumed
well rates. Particles are then tracked through the media and the
distribution of “times” or “lengths” between injecting and pro-
ducing wells provides a measure of connectivity that could be
used for ranking.

There arc other relatively simple and fast low models in-
cluding (1) tracer simulation, (2) simulation based on a network
of 1-D stream tubes, and (3) a water flood simulation in licu of a
more complex miscible or compositional-type simulation. The
time of first water arrival is likely a good measure for the break-
through of other miscible components in a more complex pro-
cess.

Another ranking approach is to use the correct physics or
flow equations but with the geological models scaled to such
a coarse resolution that the computer time is acceptable. The
coarseness of the underlying grid will compromise the direct use-
fulness of the results. Nevertheless, the relative ranking of the
results may be used to rank the underlying geological realiza-
{1ons,
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Water Injector

Seating Fault

Horizontal Producer

Initial Water Oil Contact

Figure 1: Example 2-D flow scenario with vertical water injector and
horizontal producing well.

An Example

For illustration, a 2-D cross sectional example will be shown
to illustrate the ranking measures described above. Although
the example is synthetic, it shares many features with realistic
reservoir examples. This example is fashioned after a fairly high
net-lo-gross (about 80%) fluvial environment with discontinu-
ous shale remnants. The shales have no effective porosity or
permeability. The sand/shale (lithology), porosity, and perme-
ability distributions are constructed to honor the profile of prop-
crties at the water injection well and the horizontal production
well, see Figure 1. This representative cross section is 1000 me-
ters long (200 - S meter blocks) and about 20 meters thick (40 -
0.5 meter blocks). In practice, this is one section of many con-
nected to the horizontal production well.

The flow characteristics of this cross section are not known
exactly due to uncertainty in the geologic model. 250 realiza-
tions of lithology, porosity, and permeability were generated and
flow simulation performed on ali 250 realizations. The flow re-
sponse variables of interest are (1) the time of first water arrival
at the horizontal producer, (2) the water cut after the injection of
one pore volume of water, and (3) the fraction of oil recovered
when the water cut reaches 90%, see below.

The 250 rcalizations of lithology were constructed with se-
quential indicator simulation®. Although the indicator data at
the well locations is honored; the average shale proportion in
cach realization varies due to ergodic fluctuations, sce Figure 2.
To be realistic, the vertical variogram range was considered known
at 1.0 m and the horizontal variogram range was considered to
be follow a triangular distribution (minimum of 50 m mode of
100 m and maximum of 250 m).

Porosity models were generated with sequential Gaussian sim-
ulation for the sand lithology only; shales were assigned zero ef-
fective porosity. The 250 porosity realizations were constrained
to the well data, a histogram from the well data, a known verti-
cal variogram, and an uncertain horizontal variogram. Perme-
ability was assigned to each realization with simulated anneal-
ing to honor the permeability at the well locations, a porosity-
permeability cross plot (0.6 correlation coefficient), and a vari-
ogram model.
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the ranking indices provided by §;,¢ = 1,...,5. Some remarks:
{1) the negative correlation between r¢, (breakthrough)and r¢,
(final rate) is explained by noting that the faster the breakthrough
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realizations.
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Ranking 5: Recovery at Intermediate Time

100.

150. 250.

Ranking 3: Total Fluid Rate

Figure 4: Scatterplot between the ranking index due to response S (in-
termediate recovery) versus the ranking index due to response 3 (final
rate). The linear correlation coefficient is 0.39.

Response Variable Ranking
T 1 T 2 T 3 T 1 T 5
e, | 1LOO 024 -0.16 -008 0.20
e, 1.00 015 021 078
Te, .00 098 039
T'gq 100 046
rfs l OO

Table 1: Correlation coefficients between the ranking indices provided
by the five reference flow simulation responses.

will be at that time, (2) the strong positive correlation between
e, {final rate) and r¢, (0il rate) is explained by noting that both
&3 and &4 are measures of effective permeability of the system,
and (3) the good correlation between r¢, and re, is explained by
noting that £, and &5 are both measures of oil recovery at two
different times. The scatterplots between the ranking measures
should be checked to ensure that a few outlier points are not de-
stroying an otherwise good correlation. As an example, this is
not the case on Figure 4.

An important point to note is that, in general, there is poor
correlation between these reference ranking measures. The im-
plication is that there is no unique ranking. A different ranking
will have to be used for each response variable of interest.

Figure 8 (al the end of the paper) shows gray scale maps
of the permeability for the low and high ranking realization for
all five response variables. The high ranking realizations have
more connected dark pixels (high permeability ). The results ap-
pear reasonable, 1.e., the realization with the fastest breakthrough
(upper right) has a connected high permeability streak from the
injection well.
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Statistical Ranking Measures
Ts, Ts, Tsy Ts, Tss  Tsa | Tawg
re, | 0.16 0.15 007 0.19 000 0.18]0.12
re, | 038 037 000 032 027 020027
re; | 051 052 032 043 024 036 | 041
Te, | 054 055 032 046 027 039 | 044
Te, | 048 046 0.12 042 040 032|038
041 041 0.17 036 024 029|032

Table 2: Correlation between statistical ranking measures and refer-
ence flow response ranking measures.

Statistical Ranking Measures For brevity, the results from a
limited number of statistical ranking measures are shown here:

[. s, = netto gross ratio (2)

2. 14, = net pore volume (3)

3. r,, = arithmelic average of permeability (4)

4. rg, =total connected volume within 5 GEOBODIES

5. 14, = total volume connected to the injecting and produc-

ing well locations

6. r,, = total volume connected between the injecting and
producing wells

Table 2 shows the correlation between the true ranking and the
statistical ranking. Some remarks: (1) the net-to-gross ratio is
the best overall ranking measure, (2) the total connected volume
provides the best ranking for breakthrough, (3) the ranking pro-
vided by the average permeability and connectivity to well loca-
tions do not perform well in this case, and (4) 7,4 (the ranking
based on the average of r5,,7 = 1, ..., 6) does not perform bet-
ter than the net-to-gross (r,, ) or connectivity ranking (r,,).

Flow-Based Ranking Measures The realizations were scaled
up so that the flow simulation could be run much faster. A 16:1
scale-up resulted in a 24:1 savings in CPU time. Upscaling of
absolute permeability was performed by applying no-flow bound-
ary conditions and solving the single-phase steady-state flow equa-
tions. No changes were made to the relative permeability curves.
The coarse-scale flow response variables are not considered trust-
worthy due to numerical dispersion; however, the realization rank-
ing provided by these responses performs as well as the statis-
tical ranking measures, see Table 3. The poorest correlation is
for the breakthrough time; the connectivity of the high and low
permeability streaks are not captured in the scale-up while the
average permeability characteristics are maintained fairly well
{probably due to the single-phase flow-based upscaling).

Figure 5 shows the correlation between coarse and fine scale
flow responses for a number of scale-up ratios. There is surpris-
ingly little difference between the results at 64:1 and 16:1. The
correlation drops significantly at a 256:1 scale-up ratio.
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breakthrough 0.27
ultimate recovery 0.38
final rate 0.56
oil rate 0.56
intermediate recovery  0.40

Table 3: Correlation between reference flow response ranking and
coarse scale flow response ranking.

LI e elllo- .

Correlation

0'0 T T T T ’ T T T T l
256:1 64:1 16:1 41 1:1

——————
Scale up Ratio

Figure 5: Correlation between the reference flow response ranking
and coarse scale flow response ranking versus the scale up ratio.

Decision Making with Loss Functions One motivation for rank-

ing realizations is to pick low-side, expected, and high-side real-
izations. Almost always we want to know the cumulative prob-
ability to assign to the low and high realizations, e.g., is the low
realization the 1% quantile or the 10% quantile? Less often, we
want to use a limited number of realizations to define the full
CDF of the response variable so that optimal decisions can be
made®”.

Figure 6 illustrates this idea with the distribution of ultimate
recovery. The histogram and CDF of the 250 ultimate recov-
ery values are shown at the top. An assumed loss function is
shown in the center of Figure 6. This loss function quantifies
the economic impact of estimating too much or too little recov-
ery. This loss function was chosen arbitrarily for this example.
Finally, knowing the CDF and the loss function we can calculate
the expected loss associated to any estimate of ultimate recovery
(bottom of Figure 6). Note that the optimal estimate of ultimate
recovery is 770 (arbitrary units).

It is possible to use a limited number of realizations, cho-
sen by some ranking measure, to define some points on the CDF
curve. Assuming some interpolation (say, linear) between these
CDF points we can make the same L-optimal estimate. Of course,
this estimate is poorer than we would get with the procedure
shown in Figure 6 since the ranking is not perfect and the inter-
polation between the known CDF points is an approximation.
Figure 7 illustrates the “‘Ranked’ approximation to the true cdf.
In this case, the net-to-gross ratio was the best statistical rank-
ing for the ultimate recovery. The L-optimal estimate from the
“Ranked” CDF is 800 (versus 770 from the true distribution)
and the expected loss (read from the true curve) increases by
1.1% from 53.29 to 53.87. Depending on the units of the loss
function (dollars in all practical problems), this amount quan-

Ultimate Recovery
b Numbar of Dala 250
-oplimal aali mean 904 6
L-oplimal aaf \ma|d. std Sev, 3206

coel_of var 0.4
8l maximum 4232.6
upper quartile 1009.7
- madian 894 4
ower quartile 7616
minimum 12.0

i
SENFERARNN
0 400. 800 1200. 1600

0.8 ] -
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oa; /

Cumulative Frequency

0o ] o
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Uttimate Recavery

Dimensioniess Loss
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-800. -400. 0 400. B0O.
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300.0

Expectad Loss

L-optimat estimate,

T + T T
o 400 800 1200 1600.
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Figure 6: Histogram of the ultimate recovery, CDF of the ultimate re-
covery, hypothetical loss function, and loss for each estimate, the L-
optimal estimate is 730.
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Figure 7: CDF and expected loss for the true distribution of ultimate
recovery, the approximation obtained when using the three ranked re-
alizations, and the approximation obtained using the first three realiza-
tions.

tifies the value of running more flow simulations to more pre-
cisely quantify uncertainty.

Figure 7 also shows an estimated CDF and expected loss curve
labeled “Random™. In this case, the first three realizations were
taken, sorted from smallest to largest, and then assigned to the
25%. 50% and 75% quantile. Note that the CDF deviates con-
siderably {rom the true cdf and the L-optimal estimate is 900
(versus 770 from the true distribution) with an expected loss (read
from the true curve) of 64.80 (a 20% from the true value). Note
that the ranked CDF is closer to the true CDF and the L-optimal
estimatc is better. Considering loss functions allows a value to
be placed on ranking the realizations.

Discussion

This paper has made a number of points regarding the ranking
of geostatistical realizations:
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¢ Ranking and selecting geostatistical realizations is neces-
sary since it is often impossible to perform reservoir sim-
ulation on a large number of geostatistical realizations.

¢ Ranking must be performed according to a scalar quan-
tity; assumptions must be made to rank realizations when
there are multiple flow response variables.

e Ranking realizations is important when there is a signif-
icant variation in the response variable, e.g., the range in
the breakthrough time was from 0.17 to 0.5 pore volumes
of water injected.

o For the example presented here the net-to-gross ratio is
a good ranking index. Flow simulation at a coarse scale
also worked well even with scale-upratios as high as 64:1.

¢ The use of loss functions and the expected loss is an ap-
proach that could be used to measure the value of rank-
ing realizations or to justify the CPU-expense of running
multiple fine-scale detailed flow simulations.

Future Work

Any fast flow simulation, regardless of implicit assumptions, is
a good candidate for ranking. Promising techniques based on
streamlines and random walk simulation have not been demon-
strated in this paper. Although no ranking measure can over-
come the non-uniqueness inherent with multiple response vari-
ables, these techniques have potential for improved ranking.

A greater number of case studies are required to determine
those ranking measures which are simple and robust. When pos-
sible, we may want to avoid the task of ranking realizations and
pay the CPU-cost of running more detailed flow simulations. In
this case, we might still consider ranking the realizations and
then running a limited number of even more detailed flow sim-
ulations. Given the significant geological heterogeneity and sig-
nificant size of most reservoirs (relative to the scale of core data),
the related problems of scale-up and ranking realizations will be
the subject of future work.

Nomenclature
v = semivariogram
h = lag separation vector
u = location coordinates vector
¢ = pososity
ky = horizontal permcability
i = node index
7 = node index
l = realization number index
re(l) = rank order of (I) according to £
() = flow response variable
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Figure 8: Lowest and highest ranking realizations for each of the five response variables. The gray scale maps are of permcability (while is low and
black is high permeability). In all cases there are more high permeability cells in the high ranking realizations.
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