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Abstract

An approach to model the detailed 3-D distribution of
lithofacies and porosity constrained to seismic data is
presented. The simulated annealing-based approach
explicitly honors the relatively coarse vertical resolution, from
a reservoir modeling perspective, and the less than perfect
correlation of seismic with lithofacies proportions and
effective porosity. Conventional geostatistical procedures
such as co-located cokriging or the Markov-Bayes model
assume that the seismic attribute has the same volumetric
support as the geological modeling cells. The conventional
techniques are reviewed, details of the proposed methodology
are presented, and a reservoir case study is shown.

Introduction

Due to geological complications and inherent limitations in
scismic  data  acquisition, seismic inexactly measures
lithofacies proportions and average porosity. Typically, the
seismic-derived lithofacies proportion and porosity may be
correlated with the true values with a correlation of 0.5 to 0.7.
The specific seismic attribute and degree of correlation must
be calibrated for cach reservoir. Geostatistical techniques to
integrate seismic data must account for this precision.

Another consideration, when using seismic data, is that
scismic-derived proportions and porosity represent a volume
significantly larger than the typical geological modeling cell.
The arcal resolution is often comparable.  The vertical
resolution; however, is 10 to 100 times the resolution of the

geological modeling cells. Current geostatistical models are
built at a vertical resolution of |-3 feet and current seismic
data informs a 30-100 foot vertical average. The detailed
resolution of geostatistical models is considered necessary to
transfer the effect of heterogeneities into flow simulators.

There is a need for geostatistical modeling tools to explicitly
account for the precision and scale of seismic data. Most
conventional geostatistical techniques account for the
precision of the seismic data by treating it as soft or
secondary data. At times, the seismic data is considercd to
represent an arithmetic volume average of the lithofacies
indicator or the porosity. A review of conventional
geostatistical techniques will show that they do not
simultaneously handle the precision and scale of seismic data.

An approach will be proposed based on an extension of the
simulated-annealing approach to geostatistical model
construction.  An objective function is constructed that
constrains the model to the seismic data accounting for both
the predefined precision and scale of the scismic data.

An example from a West Texas Permian Basin reservoir is
developed to demonstrate the practical applicability of the
proposed approach. The 3-D distribution of porosity is
constrained to a seismic attribute representing an imprecise (p
=0.5) 50-foot vertical average.

In an increasing number of cases, seismic data or hand-drawn
geological trend maps are available and we want to build
them into detailed 3-D geostatistical models, The
methodology proposed in this paper is suited to those
situations.

The importance of simultaneously accounting for the
precision and scale of seismic data could only be assessed by a
number of comparative reservoir case studies.  These
comparative studies arc considered importanl but are not
included in this paper. For the time being we must argue that
better reservoir models arc obtained when they arc
constrained to the maximum amount of data properly
accounting for the precision and scale of each data source.
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The Problem

In general, the problem is to build 3-D realizations of
lithofacies codes, porosity, and permeability at a sufficiently
detailed resolution to provide a reliable basis for well
planning, volumetric calculations, and meaningful effective
flow properties. ~ We assume that seismic constrains
permeability via the lithofacies and porosity, i.e., permeability
models will be constructed on a by-lithofacies basis to honor
porosity. A collocated assumption is acceptable at that stage
since all data relate to the geological modeling cells.

We most often map the lithofacies code, porosity, and
permeability at the scale of the data on a network of grid
nodes that we call geological modeling cells. That is, we are
modeling pseudo-point properties on a grid that is coarse with
respect to the point (core/log) data scale. Convenient
methods have not been devised to mode! geological modeling
cells accounting for the internal heterogeneities. Some
reasons for this difficulty include (1) there would be a mixture
of lithofacies in each geological modeling cell, (2) the
relationship between porosity and permeability is known at
the core scale, and (3) permeability doesn’t average with a
simple arithmetic or geometric average.

The main distinction between modeling lithofacies codes and
porosity is that a greater variety of methods are typically used
(o model lithofacies. In particular, object-based schemes and
cell-based schemes. A discussion on object-based facies
modeling constrained to the scale and precision of seismic-
data is presented at the end of the paper. For clarity, we will
focus on the modeling of an indicator transform of lithofacies
and porosity.

Consider k=/.... K lithofacies types with the indicator
transform at location u, ue A (A denotes the area or volume of
the reservoir layer under consideration) for type & defined as:

k) 1, if location u in lithofacies &

k) = . (1)
0, otherwise

A volumetric average of a lithofacies indicator over a volume

v may be interpreted as the proportion of lithofacies k in v:

i(wk)= .[’i(u;k)dv )]

where u represents the center of volume v. The indicator
transform at a particular location (geological modeling cell)
may be O or 1. This volumetric average is valued
continuously between O and 1.

Consider also the porosity ¢(u), ueA. and the volumetric
average of porosity ¢,(u). The indicator formalism and the
Markov-Bayes algorithm in particular consider an indicator
coding of the continuous porosity variable:
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1, if location ¢(u) < ¢
i(u9)= . (3)
(w;9) 0, otherwise
The indicator transform at a series of threshold values
informs the probability distribution of ¢(u).

The volumetric average properties have less variance than the
pseudo-point (or geological modeling cell) properties. The
three scales of interest are the pseudo-point (core/log) scale
(#), the seismic scale (v), and the scale of the reservoir or area
of interest (A). The relationship between the variances (also
called dispersion variances) is given by Krige’s relation':
D*(e,A) = D*(s,v) + D*(v, A) (4)
where DZ(O,A) is the variance of points within the reservoir
(6* from the stationary histogram of core/log data), D*(s,v) is
the variance of points within the seismic scale volume, and

D?(v,A) is the variance of the seismic scale properties and the
reservoir.

Another general relation is that the quantity D*(v,V) is
estimated from the variogram:

D*(v,V)=y(V.V)=7(v.v) 5)
where the “gamma bar” values are calculated from the
elementary variogram as:

T =] | vix—ydxdy (6)

where ¥(,8) is 0.0 since Y(0) = 0, ¥(A,A) = & (the
variance) provided that the reservoir A is large with respect to
the variogram range. The “gamma bar” values for
intermediate volumes v are calculated from the variogram
model of the point-support data.

As an example, consider the normal scores transform of

porosity. By definition, the variance = 6° = Y(A,A) = 1.0.
The variance of any intermediate volume v is given by

D*(v,A)=10-F(v,v) y(v,v)
calculated from the variogram model of the core/log data.
The variance of seismic-derived porosity may exceed this
predicted variance due to the fact that seismic does not

directly measure average porosity; there is some imprecision.

where would be

These volume-variance relations are well-known in mining
geostatistics but less commonly wused in petroleum
geostatistics.

Interpreting and processing seismic data to obtain the greatest
information on lithofacies proportions and porosity is not the
subject of this paper. We will assume that we have a seismic
attribute (impedance, low frequency, peak amplitude over the
interval, some complex non-linear combination from a neural
net, etc.) s,(u) that informs on the proportion of lithofacies k:
i(u;k) and/or the volumetric average of porosity: ¢(u). For
convenience, the seismic attribute s,(u) could be in the units
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of the variable of interest (fraction or porosity units).

The nature of the “information” is partially revealed in cross
plots between s (u) and iJ(u;k) and/or s(u) and ¢,(u) from
available well data. An even greater amount of “information”
may be revealed by cross plots of the two attributes at
different locations, e.g., s, (u+h) and i(uk) where the lag
vector h is varied within reasonable bounds. In practice, the
areal distribution of the seismic data s,(u) is dense and the
cross plot at h=0 is of greatest importance; other h-cross plots
are not necessary.

The v subscript reminds us that seismic data represent a
vertical average 10-100 times greater than the scale we are
modeling. A calibration cross plot between the seismic
attribute s.(u) and the collocated variable of interest i (u:k)
and/or ¢,(u) reminds us that this larger scale information is
not precise.

Conventional Techniques

A review of conventional techniques will be given to motivate
consideration of the simulated annealing-based approach we
are proposing.

One approach to account for seismic data is to use a direct
transform of the scismic variable to the lithofacies or porosity.
For example, a linear regression or neural network trained on
the calibration cross plot, e.g., lincar regression. These
transform approaches will not be discussed in detail since
they do not respect geological variability, the scale of the
seismic data, and the inherent uncertainty/imprecision of the

seismic data. Moreover, the discussion will be restricted to
geostatistical  simulation  algorithms  versus  estimation
algorithms. In simulation, we are interested in realizations

that have appropriate levels of heterogeneity and that honor
the data values without any unnatural spatial discontinuities.
Estimation techniques for mapping such as kriging or
cokriging are not suitable since they provide too-smooth
models™”.

Consider modeling the 3-D distribution of porosity ¢(u), ueA.
{not the vertical average ¢.(u)). With the exception of the
Gaussian-based techniques, all of the methods could be
extended to consider the a categorical lithofacies indicator
variable i(u:k).

When necessary, the seismic attribute sy(u) is replicated for
all focations within the seismic data volume uev.

External Drift the scismic variable could be used as a trend
madel for the mean of the porosity’. Within the context of
stochastic simulation, the local porosity mean is:

m,(u) = a, +a,s,(1) N
where ap and a, linearly rescale the seismic attribute s,(u); the
assumption is that the spatial trends in porosity ¢(u) are
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informed by a linear rescaling of seismic. In general, this
assumption is only valid when there is some functional
relationship between the seismic attribute and the variable of
interesl, e.g., seismic attribute = velocity and variable of
interest = depth.

Locally Varying Mean The idea is to transform the seismic
attribute to the units of porosity, s,(u) — m,'(u), and consider
it as a local mean in subsequent simulation of porosity'~.
This transformation could usc some form of regression or
more sophisticated neural networks. Kriging in the stochastic
simulation algorithm is then performed with these local
averages:

(o) -m )]=3" A,[0(,)-m ()] ®

where ¢(u) is estimated using nearby porosity data, 0,
a=1,...,n, the seismic-derived mean values at the location
under consideration my’(u) and at the data locations my'(uy).
o=1,...,n. The kriging weights X,, a=1,...n are derived by
the conventional simple kriging equations. Essentially we are
working with residuals from the seismic-derived mean
properties.

This is an easy-to-apply straightforward approach applicable
in cases where a more eclaborate calibration approach is
considered too time consuming.

Block Kriging Once again, the seismic attribute is
transformed to the units of porosity s.(u) — mg’(w); however,
we make the assumption that m,'(u) is a direct measurement
of the arithmetic average porosity over the volumes v, i.e., we
now have data ¢ (up)= mq,‘(up). B=1,...N where there are N
seismic data locations'?. Kriging may then be used with
surrounding point porosity data and the seismic-derived block
data:

n n , ,

o) =2, Ad(u,)+ 3, A6 (uf) ©)
where the kriging weights Aq, a=1,...,n and A'g, B=1,...,n" arc
obtained from the conventional simple or ordinary block
kriging equations. The point-block ¥..(h) and block-block
variogram ¥, (h) are given by averaging the porosity or point-
point variogram (sec previous “‘gamma-bar”  discussion).
This approach addresses the scale of the seismic data but does
not address the precision; the seismic-derived porosity data
are incorrectly considered as perfect block measurements of
porosity.

The estimate in equation 7 may be used in either a Gaussian
or indicator simulation context; in Gaussian simulation it is
the conditional mean, in indicator simulation it is a local
probability estimate.

Block Cokriging The same linear cstimation scheme (9)
could be considered with block cokriging'?. This calls for the
calculation and modeling of a point porosity variogram
Yeo(h), a point-seismic cross variogram Y. ,(h), and a seismic-
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seismic variogram ¥, (h). In block kriging (not cokriging)
these variograms are analytical functions of the single point
porosity variogram ¥, .(h). The added flexibility of cokriging
demands that they be inferred and fit from the available data.
In this way, both the scale and precision can be handled.

This cokriging estimate can be used in either a Gaussian or
an indicator simulation context. This full block cokriging
estimate is the most rigorous conventional geostatistical
approach. It has not caught on in practice (yet) due to the
tedious variogram inference, the added computational burden
of cokriging, and the added computation required for block
kriging.  The Markov-Bayes and collocated cokriging
alternatives were devised to overcome these limitations.

Markov-Bayes In an indicator simulation context™*® (for
continuous (3) or categorical variables(2)), the Markov-Bayes
algorithm® is based on the assumption that the seismic
attribute s,(u) is known at all locations and that it perfectly
screens all other seismic data. This Markov assumption
allows the cross variogram and variogram of the seismic data
to be expressed as simple functions of the point indicator
variogram. Recall that the probability estimate:

. n . n’

F(wz)=AF(2)+ 2a=l Ahz(ua;z) + Zﬁzl%y(uﬂ;z)

(10)
where i, z), @ = 1,....n are hard indicator data coming from
known porosity data and y(ug z), B = 1,...,n" are soft indicator
data coming from a calibration cross plot of porosity and
seismic. A cokriging is used to establish the weights A, ,or =
l,...,n and A'g ,8 = 1,...,n". The central idea behind the
Markov-Bayes model are relations for the cross i-y and direct
y-y variogram based on the direct i-i variogram and
calibration coefficients derived from the porosity-seismic
cross plot.

Collocated Cokriging assumes that only the collocated
seismic attribute s,(u) needs to be considered. A Markov-type
assumption (similar to Markov-Bayes) allows the porosity-
seismic cross variogram Yg,(h) to be expressed as a simple
function of the porosity variogram f,(h); the seismic
variogram is not needed since only one seismic data is
considered”®®.

The porosity and seismic data are transformed to standard
N(0.1) Gaussian distributions y, and y,. The estimate is
written:

vow)=2"_ Ay, (u,)+ A, () (an

the cross correlogram, p,,(h), between v, and y, is given by
the product of the correlation coefficient of the calibration
cross plot and the correlogram of porosity pg(h).

conventional  simulated-
collocated seismic data

Annealing Cosimulation the
annealing procedure considers
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together with a correlation coefficient or a full bivariate
calibration cross plot. The simulated annealing optimization
procedure is then used to arrive at a 3-D model that has the
appropriate histogram, variogram, and correlation with
seismic. The shortcoming is that the scale of the seismic data
is not explicitly honored.

The Proposed Procedure

The simulated annealing procedure has been extensively
considered in universities and is being increasingly applied
due to its ability to honor a wide variety of input data'®".
Simulated annealing is based on an analogy with the physical
process of annealing. For 3-D geostatistical modeling, the
procedure of simulated annealing may be summarized as:

1. Create an initial 3-D numerical model by randomly
assigning the porosity ¢(u) or lithofacies indicator i(u;k)
at each grid node. Often, this initial random assignment
will be taken from the global histogram.

2. Define an objective function as a measure of difference
between desired features and those of the realization,
e.g., the objective function could include the squared
difference between the variogram that represents the
realization and an input variogram derived from data.

3. Perturb the model by assigning a new porosity or
lithofacies indicator at a randomly chosen location in the
3-D model.

4. Accept the perturbation when the objective function
decreases (or if it increases by an acceptably smali
amount); reject it if the objective function has increased.

5. The perturbation procedure is continued until a low
objective function state is achieved.

The objective function is made up of the weighted sum of
components designed to account for different sources of data.
The weights are calculated such that all components of the
objective function are lowered to zero at the end of the
annealing process, Typical components in the objective
function are (1) the target histogram, (2) the 3-D variogram.
(3) indicator variograms designed to quantify special
continuity of extreme low and high values, (4) correlations
with collocated secondary data, and (5) well-test derived
effective properties.

The idea documented in this paper is to add the correlation
between a volumetric average of the variable being mapped
and a secondary variable. That is, the correlation between
s(u) and i (w;k) and/or s.(u) and ¢,(u) where i (u;k) and ¢.(u)
are averages of the lithofacies indicator f(u;k) and the porosity
®(u) being modeled at a small scale. The seismic attribute
s.(m) is a 2-D grid or, perhaps, a coarse 3-D grid.
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A reference correlation coefficient p; o or p,  could be
established from the calibration well data. The deviation
from the model could then be measured by the sum of squared
differences between the reference correlation coefficient and
that of the model

N
. reference.  realization |©
Q - [p p iy ]

IR

(12)

In some cases, we want to reproduce more details from the
cross plot relationship between s (u) and i,(u;k) or s, (u) and
0.(u). A discretized bivariate probability distribution could be
considered. A series of conditional cumulative distribution
functions are denoted:

F(‘A.i,]: -"j) = Prob{¢.< ¢\‘I._/ V 8SS <85y 1,
i=1..n,.j=0..n,

(13)

Where n, and »n, are the number of average porosity and

seismic thresholds respectively, 5}, j=0,...,n, are the seismic
thresholds (sy=0), and @.;, i = /..n, are the porosity
thresholds within seismic class j. The component objective
function is written:

!

Ny

2 [Fre/ereme (¢m‘j , S}' ) _ Freuhzu!um (¢w"] , si )]2
1

(14)

Delails of the simulated annealing methodology may be found
in many places; the central idca is to constrain a volumetric
average directly.

Object-Based Lithofacies Modeling

In depositional environments where the genetic geologic units
consist of clear geometric bodies, as is the case in many
fluvial reservoirs, object-based modeling techniques are used.
The iterative scheme proposed above (o constrain detailed 3-
D realizations to an imprecise vertical average could be used
in a straightforward manner. Paper SPE 36514 in this same
conference describes a hierarchical object-based scheme that
would be appropriate for this purpose. The objective
functions given above could be used directly.

Reservoir Example

A location map of the 62 vertical wells from a West Texas
Permean Basin reservoir is shown on Fig. |. The area of
interest is 10400 ft by 10400 ft. 3-D seismic data is available
over this area. The reservoir layer of interest has a nearly
constant thickness of 50 ft. The goal is to create 3-D porosity
models that honor the histogram and variogram of porosity in
the wells as well as the seismic data. The grid definition for
this example is the same in X and Y (65 nodes separated by
160ft.) and 50 units in Z (average cell thickness 1.0 ft.).
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Fig. 2 shows the histograms of porosity and the vertical
average of porosity.

A number of attributes from the 3-D seismic data were
considered to inform the porosity over the layer of interest.
Fig. 3 shows the low frequency seismic response. This
attribute was selected due to its high correlation with the
vertical average of porosity, see Fig. 4. A correlation
coefficient of about 0.60 is typical.

The detailed 3-D well-log derived porosity data were
transformed to a standard Normal distribution. Experimental
variogram values in the vertical, north-south, and east-west
directions are shown on Fig. 5. The variogram model fit to
these data is shown by the solid line and is given by:

h 2 h 2 h 2
h)=00+06Sph| || == | +| 22 ) +( EW]
v(h) p ( 12 ) (3000 1000
hNS

+O4S h (h\ell)2+( )2+[hEW )2
P 50 30000 6000

Using this variogram model (Fig. 5) the ;(v, v) for v=a50

(15)

foot vertical average is 0.692 {working with a normal score
transform). This would imply that the variance of the vertical
average data would be 1-0.692=0.308. In units of porosity,
the standard deviation of the porosity distribution should

decrease from 3.27 to 1.81 (v/3.272 @« 0.308 ). As shown on
Fig. 2, the standard deviation of the vertically averaged data
is 1.89. The relatively small difference between 1.81 and
1.89 is likely due to the limited number of wells and spatial
correlation beyond that implied by the variogram.

The ?(v, v) value for v = a 160 by 160 by 50 foot geological

modeling cell is 0.700 compared to 0.692 for v = a simple 50
foot vertical average. The horizontal variogram has a range
large with respect to the size of the geological modeling cells.
Correlating the seismic attribute to a vertical average from
the wells without considering the horizontal averaging is a
reasonable assumption.

The ;(v,v) value for v = a 160 by 160 by I foot geological

modeling cell is 0.11 (using the normal scores variogram).
This means that the variance of the geological modeling cell
volume support decreases by only [1% from the point support
data. Admittedly, this depends on how the variogram is
modeled for short distance lags; however, the fit on Fig. 5 is
quite well informed. Assigning point properties to the
relatively large geological modeling cells is a reasonable
approximation.
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Collocated Cokriging: One of the simplest approaches to
account for the seismic data is sequential Gaussian simulation
with the collocated cokriging option. The SGSIM program
from the second edition of GSLIB was used for this purpose.
Fig. 6 shows a horizontal and vertical slice through one
SGSIM model. The character of the seismic data, e.g. higher
porosity on the NE quadrant, is reproduced. Fig. 7 shows the
cross plot reproduction of the vertical average of porosity with
the seismic attribute. Note that the correlation (0.9) is
significantly greater than the input 0.6 because we are
looking at the correlation between the vertical average and
not a point-by-point correlation. We did not consider
lowering the “point-by-point” correlation to arrive at a
vertical average correlation coefficient of 0.6.

Markov-Bayes: Fig. 8 shows slices through a realization
generated with an indicator method with the Markov-Bayes
model for cokriging (MBSIM program from GSLIB). The
B(z) values for the five thresholds were 0.23, 0.33, 0.38, 0.31.
and 0.04 for equal probability intervals (porosity thresholds of
6.0, 6.3, 8.0, 9.3, and 10.8%). The realization shows the
characteristic “patchy” pattern. Fig. 7 shows the cross plot
reproduction of the vertical average of porosilty with the
seismic attribute. Once again, the correlation is too high.

Proposed Procedure: Applying the proposed simulated
annealing algorithm (SASIM in the new GSLIB) leads to the
slices shown on Fig. 10 and the cross plot reproduction shown
on Fig. 11. The realization looks similar to the Gaussian
realization on Fig. 6. and yet the cross plot shows the target
correlation of 0.60.

Fig. 12 shows Q-Q plots comparing the distribution of
porosity in the 3-D SGSIM, MBSIM, and SASIM models
with the input data distribution. All three models reproduce
the input data distribution. The departures seen with the
MBSIM model are partially due to the lower tail and upper
tail extrapolation. The primary reason is that the calibration
cross plot is between average porosity and seismic while the
model is built and the histogram checked against the 3-D
porosity distribution.

Fig. 13 shows the vertical variogram reproduction for the 3
models. The MBSIM and SASIM models closely match the
input data-derived variogram model. The Gaussian model
reaches a too low sill value because of the large vertical
correlation.

As expected, the CPU time of the annealing run is greater
than either of the conventional techniques. SGSIM took 1.21
minutes, SISIM (Markov-Bayes option) took 5.02 minutes,
and SASIM took 21.1 minutes on a Silicon Graphics POWER
Indigo 2.
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Conclusions

Integrating seismic attributes in lithofacies or porosity
mapping requires both the scale and precision of the seismic
data to be taken into account. This paper reviewed
conventional geostatistical techniques for integrating seismic
data. The conventional techniques do not simultaneously
address the issues of scale and precision.

An incremental modification to the simulated annealing-
based approach was proposed to explicitly account for the
vertical averaging and imprecision of seismic data.

A West Texas reservoir example was developed to illustrate
the proposed methodology.  The co-located cokriging
approach in sequential Gaussian simulation and the Markov-
Bayes approach were also demonstrated. The proposed
simulated-annealing methodology works as expected. A more
complete integration of the seismic data is achieved than
conventional techniques.

Some concerns with the simulated-annealing based method
(1) the CPU requirements are significantly greater than the
conventional techniques (still practical at 21 minutes for a
211250 cell model), and (2) the method requires experience
to set the tuning parameters to achieve reasonable results.

Nomenclature

dispersion variance of properties defined over
volumes of size v in volumes of size V
cumulative distribution function

= variogram function

= lag separation vector

= indicator transform data value

kriging weight

component objective function

porosity

correlation coefficient

= location coordinates vector
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Figure 1: location map of 62 well data. The average porosity
is shown by the gray scale level.
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Figure 2: Histograms of the log-derived porosity data and the
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Figure 3: Gray scale map of seismic low frequency attribute
over the area of the 3-D seismic survey.
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Figure 4: Calibration cross plot between vertical average of
porosity and seismic attribute.
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Figure 9: reproduction of cross plot from MBSIM model.
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