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Abstract
This paper presents a methodology to generate maps of high
resolution permeability from multiple well single-phase flow
rate and pressure data. The dynamic, i.e. temporal, production
data contains important information about the interwell perme-
ability distribuiton that should be integrated with static data,
such as well and seismic data, to generate reservoir models
to provide reliable input to reservoir simulation and reservoir
management. A two-step procedure is proposed for such data
integration: (1) establish the spatial constraints on large-scale
permeability trends due to the production data using an inverse
technique, and (2) construct the detailed geostatistical reser-
voir models subject to those spatial constraints using geostatis-
tical techniques. The single-phase pressure and production data
could be provided by permanent pressure gauges, simultaneous
multiple well tests, or flow rates under primary depletion.

Production data and reservoir petrophysical properties,
specifically permeability, are nonlinearly related through flow
equations. Establishing the spatial constraints on permeabil-
ity due to production data calls for the solution of a diffi-
cult inverse problem. This paper adapts the Sequential Self-
Calibration (SSC) inverse technique to single-phase multiple-
well transient pressure and rate data. The SSC method is an
iterative geostatistically-based inverse method coupled with an
optimization procedure that generates a series of coarse grid
2-D permeability realizations, whose numerical flow simula-
tions correctly reproduce the production data. Inverse results
using two synthetic data sets show this SSC implementation to
be flexible, computationally efficient, and robust.

Fine-scale models generated by down-scaling the SSC gen-
erated coarse-scale models (using simulated annealing) are
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shown to preserve the match to the production data at the
coarse-scale. Finally, reservoir performance prediction results
show how the integration of production data can dramatically
improve the accuracy of production forecasting with signifi-
cantly less uncertainty.

Introduction

Optimal reservoir management requires reliable performance
forecasts with as little uncertainty as possible. Incomplete data
and inability to model the physics of fluid flow at a suitably
small scale lead to uncertainty. Uncertainties in the detailed
description of reservoir lithofacies, porosity, and permeability
are large contributors to uncertainty in reservoir performance
forecasting. Reducing this uncertainty can only be achieved by
integrating additional data in reservoir modeling.

A large variety of geostatistical techniques have been de-
veloped that construct reservoir models conditioned to diverse
types of static data including hard well data and soft seismic
data.® Commonly, a number of techniques are applied sequen-
tially to model the large reservoir geometry, the lithofacies, and
then petrophysical properties such as porosity and permeabil-
ity. However, conventional geostatistical techniques including
Gaussian, indicator, annealing-based, or object-based methods
are not suited to directly integrate dynamic production data.

Production data and reservoir petrophysical properties are
related to each other through flow equations which are highly
nonlinear. As a consequence, accounting for dynamic engineer-
ing data in geostatistical reservoir modeling is a difficult inverse
problem.®*!1.14 Nevertheless, historical production data are of-
ten the most important information because they provide a di-
rect measure of the actual reservoir response to the recovery
process that form the basis for reservoir management decisions.
Integrating dynamic production data is an important outstand-
ing problem in reservoir characterization.

Ideally, we want to directly match all types of production
data in the reservoir model at the required resolution simulta-
neously with other types of geological and geophysical data.
A number of inverse techniques have been developed for this
purpose.28101L12.13.15 Direct integration at the fine scale is not
feasible because (1) the mathematical inversion of the flow
equations is computationally intensive, (2) pressure and pro-
duction data measured at the wells are responding to the spatial
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variation of larger-scale effective properties, and (3) it is diffi-
cult to simultaneoulsly match production data with other static
geological and geophysical data. Due to these limitations, cur-
rently available inverse techniques are limited to constructing
relatively coarse scale models.

The coarse grid models that could be constructed by direct
inversion techniques are usually inadequate for reliable produc-
tion forecasting. In many practical situations, while keeping
models as simple as possible, we would like to create highly-
resolved models of lithofaces, porosity and permeability. Our
proposal, therefore, is a two-stage approach where we (1) es-
tablish the spatial constraints on large-scale permeability trends
due to the production data using an inverse technique , and (2)
construct the detailed geostatistical models subject to those spa-
tial constraints and the static data as well.

A review of available inverse techniques has been presented
in reference 3. In this paper, the Sequential Self-Calibration
(SSC) inverse technique *17 is adapted to invert permeability
distribution from multiple well, single-phase production data.
Under the two-stage approach framework, the SSC method is
considered as an interpretative tool of coding production data
into spatial constraints of permeability (i.c., the multiple real-
izations of coarse grid permeability models) for the first stage
(see Figure 1). An annealing-based geostatistical technique is
used to construct high resolution reservoir models constrained
to the SSC generated coarse grid models for the second stage.
The application of the SSC method to synthetic data sets doc-
ument the utility and robustness of the method in generating
coarse-scale permeability models. The ability of using the
coarse grid models to generate fine-scale permeability mod-
els that preserve the match of the production data is illustrated.
Finally, the importance of integrating production data is illus-
tracted by performing reservoir forecasts based on the con-
structed fine-scale reservoir models.

The Sequential Self-Calibration (SSC) Method

The available production data include pressure p;(t) and
flowrate Q;(t) with time ¢ at a number of wells ¢ = 1,...ny
(n,, being the number of wells). Our goal is to find a set of per-
meability values for numerical cells in a reservoir model that
matches the observed pressure data under the given flowrate
conditions. This match is established by solving the single-
phase, slightly compressible flow equation:

kh Op
V(—V = he¢p= 1
( . p)+Q =hego, (1
where k is permeability, ¢ is porosity, p is viscosity, h is the
thickness of the reservoir, and c is formation compressibility.
The closeness of the pressure match may be quantified by an
objective function:

0= wib) [p*®) - s (1)’ @)
Z t

where p?%?(t) and p¢® (t) are the observed and numerically cal-

culated pressure data at well ¢ at time ¢, respectively; w(i, t) is
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the weight assigned to the observed pressure data p;(t) accord-
ing to its reliability (accuracy).

The SSC method is an iterative geostatistically-based
method coupled with an optimization procedure.’? Like most
geostatistical approaches, the SSC method generates multiple
equally-likely realizations of permeability fields honoring dif-
ferent types of available static and dynamic field data. The real-
izations honor a specified histogram and variogram as modeled
from the field data and dynamic pressure data at multiple wells
in the sense that the solution of the flow equation in each of the
generated realizations matches the measured pressure values at
the same well locations.

The unique aspects of the SSC method are (1) the concept
of master points and (2) a perturbation mechanism based on
kriging. We propose to extend the method for petroleum appli-
cations. As an overview, the method can be described by the
following steps (see also Figure 2):

Construct initial realizations: Multiple, initial permeability
realizations are created by conventional geostatistical
techniques constrained to all static (hard and soft) data
and the specified permeability histogram and variogram.
Each realization is processed one at a time with the fol-
lowing steps.

Solve the flow equations for the current model using the spec-
ified boundary and production rate conditions. A block
centered finite difference method with a direct matrix
solver was used to solve the flow equations in this study.

Compare the observed and calculated pressure values at
the available wells and at the given time. If the dif-
ference is smaller than a preselected tolerance value, this
permeability realization is considered to honor the dy-
namic pressure data and the procedure stops. Otherwise,
proceed to the next step.

Select master points and solve an optimization problem to
find the optimal perturbations of permeability at the mas-
ter point locations. The locations of the master points
are randomly selected and the well locations having
permeability data are automatically included as master
points. The number of master points is about one mas-
ter point per correlation range of the permeability vari-
ogram. The optimal perturbations minimize the differ-
ence between the observed and calculated pressures. The
master point concept reduces the space of parameters to
be optimized, which significantly improves the computa-
tional efficiency of the method.

Propagate the perturbation through the entire field by
kriging the optimal perturbations determined for the mas-
ter point locations. The permeability field is updated by
adding the smooth perturbation field to the previous per-
meability field. The same variogram as used to generate
initial models is used to propagate the permeability per-
turbations at master points. This preserves the original
spatial variation patterns in the permeability field.
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Loop back to Solve the flow equations until convergence.
Typically, fewer than 20 iterations are required.

Sensitivity coefficients (derivatives of pressure with respect
to the perturbation of permeability values) at all master point
locations at each time step are needed when solving the opti-
mization problem using gradient-based methods. The efficient
calculation of sensitivity coefficients has received significant at-
tention in the literature.>*1112 Appendix A presents an efficient
way of obtaining the required sensitivity coefficients as part of
the flow solution. A modified gradient projection method is
then used to obtain the optimal perturbation values at the se-
lected master locations by minimizing the objective function,
which is outlined in Appendix B.

It should be noted that the application of the SSC method
requires information on the distribution of permeability at the
scale of the numerical grid (histogram and variogram). Also
it assumes that the permeability variation in entire model is
governed by a single histogram and a single variogram model,
which may limit its application when the permeability varia-
tions in a reservoir are due to the mixture of multiple popu-
lations (e.g., controlled by multiple lithofacies or channel ob-
jects), or when there are discontinuous features such as faults,
channels, or facies boundaries. Furthermore, there is no direct
control on the reproduction of the variogram in the updated re-
alizations. A posterior check is thus needed to ensure that the
appropriate inverse results are obtained. Nevertheless, promis-
ing results have been obtained in groundwater hydrology using
the SSC method with different heterogeneity features including
the identification of non-multiGaussian features and high per-
meability flow channels.!6:17:19.20

Application of the SSC Method

In this section, we evaluate the ability of the SSC method to
generate 2-D coarse-scale maps of permeability from multiple
well production data, using two synthetic examples. In each ex-
ample, a reference permeability model is first constructed and
then the dynamic pressure responses at a number of wells, due
to changing flow rates, are obtained by flow simulation. Based
on the dynamic flowrate and pressure data and information on
the permeability variogram, the SSC method is used to invert
for permeability fields that match the production data. The in-
verted permeability fields are then compared with the reference
field to evaluate the capability of the SSC method. Note that
the application of the SSC method assumes that the permeabil-
ity field is spatially distributed following a single distribution
function that can be inferred from field data. A prior model of
the variogram must be assumed (or inferred) as well. We will
show later that the inversion results are robust to variations in
the assumed variogram.

Example 1 The first example is a 2-D, 4000 foot square do-
main, which is discretized into 25 x 25 grid cells of 160 feet x
160 feet. There is a high permeability (500 md) band connect-
ing the lower-left corner and upper-right corner. The perme-
ability in other areas is constant at 10 md (see Figure 3). There
are four wells: W1 at the center of cell (5, 21), W2 at (21, 21),
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W3 at (5, 5), and W4 at (21, 5). The four boundaries are no-
flow boundaries, porosity is assumed constant at 0.2, reservoir
thickness is 100 feet, viscosity 0.2 cp, formation compressibil-
ity 10~% 1/psi, and well radius 0.3 feet.

The imposed production rates and the corresponding pres-
sure responses at the different wells were solved numerically
and are shown in Figure 4. The reason for the different shut
in times is to create some-well interference so that more infor-
mation on spatial variations of permeability is contained in the
production data. Sensitivity studies, too exhaustive for this pa-
per, were performed with other production scenarios.

Based on the production and pressure data at the four wells,
the SSC method was used to estimate the spatial distribution
of permeability within the domain using the same discretiza-
tion. Initially, a constant permeability with Ln(K) = 2 md
was assumed at all cells, an anisotropic variogram with very
long correlation length (8000 feet) in the 45 degree direction
was assumed to be accessible from other information. The sen-
sitivity of the inverted results to the selection of the anisotropy
and initial permeability model will be demonstrated later.

After 20 iterations (about 5 minutes on a SGI workstation),
the pressure responses in the updated permeability field con-
verge to the reference pressure data. Figure 5 shows the result-
ing updated permeability field. The spatially connected high
permeability band connecting wells W2 and W3 is clearly seen.
Figure 6 shows the pressure values at the four wells computed
from the initial uniform permeability field (bullets) and from
the final updated permeability field (open circles) together with
the true resuits from the reference field (solid lines). The pres-
sure responses in the initial field deviate dramatically from the
true values, due to the poor initial model; however, the perme-
ability field updated by the SSC method accurately reproduces
the true pressure data at all wells.

Considering the fact that, in practice, the correct perme-
ability variogram is rarely known, the influence of variogram
parameters on inverse results was investigated. Also, the sen-
sitivity of the inverse results to the initial permeabulity values
and the number of master points was studied separately. Fig-
ure 7 shows the inverse permeability fields using different vari-
ogram parameters (correlation range varying from 1000 to 8000
feet, and principle anisotropy direction varying from 20 to 70
degree) and different initial permeability values (ranging from
Ln(k) = 0.5 to 10). In all cases, the high permeability band is
always retrieved, indicating the robustness of the SSC method.

Example 2 In the first example, the production data were com-
puted from coarse grid reference model and the SSC method
was used to invert permeability fields on the same coarse grid.
This would not usually be the situation in field applications. A
more realistic test is to have the synthetic production data gen-
erated from simulation using a fine grid reference model. Then,
the inversion technique is used to create coarse grid models,
which are then used as spatial constraints for the construction of
high resolution reservoir models (i.e., the two-stage approach,
see Figure 1).

In the second example, a 4000 feet x 4000 feet 2-D square
domain was discretized into 100 x 100 fine grid with cell size
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of 40 feet x 40 feet. A reference permeability at this fine scale
was generated using sequential Gaussian simulation (see Fig-
ure 8a). The mean and variance of Ln(K) were 3.0 and 3.0,
respectively. The variogram model used to generate this refer-
ence field was anisotropic spherical, with correlation ranges in
the two principal directions of 1700 feet and 350 feet. A coarse
grid model (20 x 20) scaled up by geometric averaging from
the reference field is shown in Figure 8b. This scaled-up coarse
grid model is later used for visual comparison with the inverse
coarse grid results.

Three wells (W1, W2, and W3) located at the center of fine
scale cells (58, 88), (13, 43) and (88, 33) produced oil with
varying production rates, analogous to the first example, and
the corresponding pressure responses are shown in Figure 9.
Note that wells W2 and W3 were connected by relatively high
permeabilities, whereas well W1 was located in a relatively low
permeability region. Other parameters used in solving the flow
equation for pressure on the fine (100 x 100) were the same as
in Example 1.

The SSC method generated coarse grid (20 x 20) perme-
ability realizations for which flow simulation matches the pro-
duction data. Figure 10 shows three initial permeability re-
alizations generated using the sequential Gaussian simulation
(left), and the corresponding three updated realizations by the
SSC method (right), respectively. The statistics of the reference
coarse grid model (i.e., Figure 8b) are used for generating these
realizations (i.e., mean and variance of Ln(K') are 3.0 and 2.03,
respectively; correlation lengths are 1800 feet and 400 feet in
X — and Y — directions, respectively). We can see the large dif-
ferences among the initial realizations all of which deviate sig-
nificantly from the reference coarse grid model (shown at the
bottom of the figure). However, the spatial variation patterns in
the updated realizations are much closer to the reference field,
yet the difference from realization to realization is much smaller
compared to the initial realizations. Figure 11 shows the pres-
sure responses computed from a typical initial realization and
its corresponding updated permeability realization compared
with the true pressure data. The true pressure response is re-
produced with high accuracy by the updated field, whereas the
initial field’s pressure responses deviate significantly from the
true data.

We generated 300 coarse-grid realizations using the SSC
method, from which the ensemble mean and standard deviation
fields were computed and compared with the 300 initial fields
(Figure 12). The histograms of coarse grid permeability values
at two selected locations A and B (see Figure 12) from the 300
initial and updated realizations are shown in Figure 13. Figure
12 shows the reduced standard deviation (i.e., uncertainty) from
the updated fields, particularly in the areas around the wells.
Even away from the wells, the updated fields have lower stan-
dard deviations (e.g., locations A and B in Figure 13.

Construction of Fine Scale Permeability Models

Using the SSC method, a series of equally-likely realizations
of coarse grid permeability fields can be generated, all of which
share the same histogram, variogram and production data. Usu-
ally, more detailed geostatistical models are required for flow
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simulation predictions of reservoir performance. In this sec-
tion, we demonstrate the promise of the two stage approach
to integrate production data, using the SSC results as the first
stage. Constructing fine scale models that honor the coarse grid
realizations is a problem of down-scaling.

Simulated annealing is one method that can construct fine
scale permeability models based on the coarse grid realizations,
as well as honor information on the histogram and variogram of
fine scale permeability.’ Our first approach was to use anneal-
ing and add a component to the objective function to represent
the difference between the coarse grid permeability values and
the power averages of fine scale permeabilities within the same
coarse block, i.e.,

Ncoarse—grid

— . 2
O = (o) - % (02) 3)

=1

where ncogrse—gria 1S the number of blocks on coarse grid
model, k,(u;) is the inverse permeability value at coarse block
u;, and E:(ui) is the w power average of fine grid permeability
values within the coarse block u;, which is given as:

1 1/w
o (wg) = [N > k(ui)wjl

w eV

where N is the number of fine grid within a coarse block V.
Different fine grid permeability models can be constructed,
each of which matches the corresponding coarse grid perme-
ability realization.

Figure 14 shows two realizations of fine grid (100 by 100)
permeability generated by this annealing technique and com-
pared with the corresponding coarse grid (20 by 20) images
from the SSC inversion in the second example. The histogram
and variogram used to construct the fine grid models were taken
from the fine grid reference model and geometric averaging
(w — 0) was used. Other types of data, e.g seismic data, could
also be honored at this stage.

In order to check if the fine grid permeability models still re-
produce the dynamic production data, the pressure responses at
the wells were solved on the fine grid models of Figure 14. Fig-
ure 15 shows the results (open circles) compared to the true re-
sponses from the reference field (solid lines) and the responses
from the coarse grid model (bullets). The pressure responses
are closely reproduced in the annealing-based fine grid perme-
ability models. This indicates the promise of the two stage ge-
ological coding approach to integrate production data.

An alternative and more sophisticated approach for con-
structing fine grid models using the coarse grid spatial represen-
tations is to compute local conditional distributions of coarse
grid permeability at each coarse grid block as given in Figure
13, then use simulated annealing to construct fine grid mod-
els integrating these probability constraints of the coarse grid
values.” Nevertheless, the simpler approach presented above
may see more extensive use in practice.
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improvement of Performance Prediction From Pro-
duction Data Integration

Finally, we demonstrate the importance of integrating produc-
tion data by predicting the reservoir performance in Example
2 using two sets of fine scale (100 x 100) geostatistical mod-
¢ls: one generated by the sequential Gaussian simulation not
accounting for the production data, the other generated by sim-
ulated annealing accounting for the coarse-scale spatial repre-
sentations derived from the production data as discussed pre-
viously. Two realizations of the second model are shown in
Figures 14b,d. At 120 days, a water injection well located at
the center of cell (50, 49) begins injecting water at constant rate
of 20000 STB/day (see Figure 14). The three wells (W1, W2,
and W3) are producing with constant pressure of 1000 psi.

The comparisons of predicted total produced oil and water
cuts in three wells (W1, W2 and W3) from 30 realizations of
both models are shown in Figures 16 and 17, respectively. The
true results computed from the reference fine-scale model are
plotted as the thick, light curves. It is evident that the reser-
voir models not conditioned to the production data overpredict
oil production rates, and severely overpredict water cuts at W1,
but underpredict water cuts at W2 and W3 with large uncer-
tainty. When the production data are integrated, the predicted
performance is much closer to the true results with significantly
less uncertainty. The low permeability barrier in the reference
find grid model between the injection well and W1 is not well
captured in the inverse coarse grid models. Also the variogram
distance between the injection well and W1 is larger than other
well pairs, thus there are more permeability variations between
these two wells. These may explain why the predictions in W1
are so much away from the true results compared to the results
at W2 and W3.

Figure 18 shows the histograms of total oil production rates
of the entire field (Figures 18a,b), as well as the water cuts at
individual wells (Figures 18c-h) from 200 unconditioned and
conditioned models when the injected water is at pore volume
injected (PV I) of 1.0. The true values from the reference field
are shown in the same figure by bullets. The accuracy and
uncertainty of forecasting are large using the models in which
production data are not integrated, whereas integrating produc-
tion data shows significant improvement in forecasting results
in terms of accuracy and uncertainty.

Conclusions
The SSC method appears flexible and computationally efficient
for integrating single-phase multiple well pressure/rate data. It
is well suited as an interpretive tool for extracting spatial repre-
sentations (i.e., 2-D coarse grid models) from production data
for the two-stage approach. Results from the synthetic exam-
ples further indicate that the two-stage approach has promise to
integrate production data. Reservoir performance predictions
show that the integration of production data can dramatically
improve accuracy and reduce uncertainty of reservoir simula-
tion predictions for reservoir management.

Extensive work is required to explore the limits of the SSC
method and to establish the practical range of application. On-
going research will investigate the integration of multiple phase
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production data and extentions of these methods to coarse-scale
models with different lithofacies and to 3-D. A method of an-
alyzing the degree of interference of production data from dif-
ferent wells may also be useful to guide the selection of pro-
duction data used in the inversion to increase the computational
efficiency.
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Nomenclature
P =  pressure, psi
t = time, day
k = permeability, md
¢ =  porosity
I = viscosity, cp
h = thickness of reservoir, feet
c = formation compressibility, 1/psi
Q = production rate, STB/day
o = objective function
ky = coarse grid permeability from inversion, md
k; =  power average of fine grid permeability, md
|4 = volume of coarse grid block
N number of fine grid cells in a coarse block
W =  averaging power
a = amplitude factor for constraint interval
g8 = moving step in updating parameters
Ak = permeability perturbation, md
{S} = sensitivity coefficient vector
(4] = transmissibility matrix
{B} = right hand side of discretized flow equation
[W] = inverse covariance of observation errors
krrig =  kriging estimation of permeability, md
Okrig = standard deviation of kriging estimation
i = number of master points
Ty = number of wells
N = number of time steps
Ty = number of wells
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Appendix A: Calculation of Sensitivity Coeffi-
cients

Discretization of the flow equation (1) using an implicit
scheme leads to the following equation in matrix notation:

[Al{P}*! = (B} (A-1)

where [A] is the transmissibility matrix which accounts for spa-
tial and time discretizations, as well as boundary conditions,
{B} is the right hand side matrix that accounts for time dis-
cretization and flow boundary conditions. The solution of pres-
sure at time ¢ + 1 is obtained by inverting matrix [A4], that is,

{P}*! = [A]""{B} (A-2)
The sensitivity coefficients at time step ¢ + 1 can be calculated

right after the pressure at time ¢ + 1 is obtained. The perturba-
tion of parameter k,,, can be written as:

a{ Pt'“ 9[A

(A58 + sarc (P}
(A-3)

=88Aim’ m=1,...,nm

where n,, is the total number of master points, thus,
a[P] t+1
(4] BDkm

(A-4)

8{B} _ _9lA {P}t+1,

Blkm — 8Dk m=1,...

ym
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Note that Equation (A-4) has the same form as Equation (A-1)
and the matrix [A] has just been inverted when solving for the
pressure {p}'*1. The sensitivity coefficients can be obtained at
the same time step ¢ + 1 by simple matrix operations, that is,

6Pt+l

Smit+l = BaAg. —

(471 2BL —(at JUL Py, m=1,.,nm,
(A-5)

The elements of matrices 9[A]/d A ky,, and 3{B}/8 A kp, can
be directly computed from the expressions of elements in ma-
trices [A] and [B].

The efficient calculation of sensitivity coefficients has re-
ceived significant attention in the literature. 341412

Appendix B: Minimization of Objective Function

The objective function given in Equation (2) can be written
in the following matrix form:

O({P=)) =
T

rey ({Peal}e = {Po")e) W) ({P°¥}e - {P"”"}(tg b
where {P°¥}, = {ps%, ps%, ... pi%, } and {P°*}, = {p¥’,
pe%, ... p%2 } are the numerically calculated and observed
pressures at welli = 1, ..., n,, and time ¢t = ¢y, ..., tn. [W]; is
the inverse covariance matrix of observation errors at time £. If
pressure measurement errors at different wells are independent,
[W1]; is a diagonal matrix with the form of

Wit
Wl = e
Wny,t

Objective function (B-1) is a non-linear function of the
model parameters we need to compute (i.e., the perturbations
of permeability at master locations, {M} = {Aky, Aks, ..,
Aky, }). We linealize the objective function by approximating
the pressure data by retaining its first order Taylor expansion,
ie.,

0{P}:

{Pe}} = (P} + (B-2)

where {S}; = 8{P}:/O{M} = {s1.t, 524, -» Sn,, ¢} is the
sensitivity vector at time ¢ with respect to the permeability per-
turbation at location m computed as presented in Appendix A,
with 8,5, = 0{P};/3{Akp,}. {P°*}? and {P°%}} are pres-
sure values at time ¢ before and after introducing a perturbation
matrix {M}. Using this linear approximation, after some ma-
nipulation, we can write our objective function (B-1) as follow-
ing:

O({P}!) = O({P=*}°) + 3L (D} {M}
+ 22 {M}YT[CL{M}

where the elements of matrices {D}, and {C'}; are expressed
as follows:

(B-3)

dig = 2 ({P°}, — {P?},) W] {S}e

Chykai= ({S}e)T W]e{S}:

The constraints used for minimizing the objective function
(B-3) are simply the possible minimum and maximum values
of perturbations, i.e.,

{Akmin} S {M} S {Akmax} (B‘4)

(T{M} < {Akmax}
_[I]{M} < {Akmin}

where [I] is a N, X n, identity matrix, {Akmin} =
min{K°, Kyrig— a0grig} and {Akpax} = max{K®, Kipig+
Qokrig}. {KV} is the vector of permeability values at mas-
ter points in the initial ficld, {K¢rig} and {okri} are kriging
estimations and the corresponding kriging standard deviations
at the master points based on available measured permeabil-
ity data. If there is no prior K measurements, {Kj;,} and
{okrig} can be selected as the mean and standard deviation of
the desired permeability histogram. o is a constant value that
specifies the interval size of the constraints.

The above formulation is a standard quadratic optimization
problem. In the current SSC code, we solve this optimization
problem using a modified gradient projection method to take
advantage of the simple expression of constraints expressed in
equation (B-5). At each iteration of the optimization process,
the search direction is obtained by projecting the gradient of
the objective function on the null space of the gradients of the
binding constraints (see reference 9 for details).

(B-5)
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Production data

- Spatial Statistics
- Local Well Data

The SSC Method
CCoarse-Grid Models)

(Fine-Grid Models) ~ Down-scaling

Vo

Figure 1: The Sequential Self-Calibration (SSC) method as an interpretative tool for the first stage under the two-stage approach framework. The
second stage of constructing fine grid models accounting for the SSC generated coarse grid models is a down-scaling problem.
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Figure 4: The production data (rates and pressures) obtained from the
reference field: the first example.

pdated Ln(K) Field by the SSC Method
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Figure 3: The reference deterministic permeability field: the first ex-
ampl e.

Figure 5: Final SSC-derived permeability ficld honoring pressure data
from reference permeability field (see Figure 3).
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Figure 6: The pressure responses computed from initial (bullets) and
updated (open circles) permeability fields together with the true data
(solid lines): the first example.
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Figure 7: Inverse permeability fields from the SSC method by using
different variogram parameters and different initial values: the first
example.
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Figure 8: (a) The reference permeability field at fine scale, and (b) and Figure 9: The production data (rates and pressures) obtained from the
the scaled up coarse grid permeability model: the second example. reference field at fine scale: the second example.

125



12

Xian-Huan Wen, Clayton V. Deutsch and A. S. Cullick SPE 38728

Initial Ln(K) Fiskd: Realization no. 1

X (loot)

Initial Ln(K} Fisld: Reakzation no. 3

L]

Figure 10: Three initial permeability realizations and the correspond- B
ing updated fields from the SSC method.
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Figure 11: The pressure responses computed from the typical initial
X oot and updated permeability fields together with the true data in a typical
realization: the second example.
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Figure 12: The ensemble averaged permeability field and the corre-

sponding standard deviations from 300 initial and updated realizations:
the second example.
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Figure 14: Two realizations of fine grid models, constructed by the
simulated annealing method, that honor the coarse grid models gener-
ated by the SSC method shown on the left-hand side.
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Figure 15: The comparison of pressure responses computed from
fine and coarse grid models shown on the top of Figure 14 to the true
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Total Oi Produced in Weil 1 (Unconditionsi} ‘m__TWwWhWHHWI Water Cut in Wel 1 (Uncondiionsi) Water Cut in Well 1 (Conditionsd)
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PVt PVl
Figure 16: The total oil production rates at the producing wells from Figure 17: The water cuts at the producing wells from 30 uncondi-
30 unconditioned (left) and conditioned (right) realizations. The thick tioned (left) and conditioned (right) realizations. The thick light curves
light curves are results from the reference true field. are results from the reference true field.
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Figure 18: The histograms of total oil produced (a, b) and water
cuts at three wells (c-h) from 200 unconditioned (left) and conditioned
(right) realizations when the injected water is at PV I = 1.0. Bullets
are the true results from the reference field.
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