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Abstract

Generation of a reservoir model’s spatial permeability dis-
tribution directly from historical multiple-well pressure and
fractional flow rate data requires an inverse solution of the
flow equations. ~is computation generally utilizes a gradient
method to solve the minimization problem. A previously re-
ported geostatistically -based inverse sequential self-calibration
(SSC) technique has been shown to significantly reduce the
computer time as compared to full inversion solutions and to
yield excellent results for single-phase pressure.

In this paper we extend the SSC to jointly invert multiple
well pressure and multiphase fractional flow data by: (1) adapt-
ing a fast streamline simulator for the forward flow solution;
and (2) implementing a new method for computing the sensi-
tivity coefficients for fractional flow rate. The method is fast
and robust, and an important consequence of the method is that
the spatial correlation structure is honored through the krig-
ing equations in the SSC. This leads to well-behaved objective
functions with low final values and preserves the prior model
spatial characteristics.

The paper demonstrates the extended SSC for generating
permeability realizations from production data using a synthetic
reservoir model. The paper systematical] y compares the quality
of the production data matches for inversion of pressure data
alone, fractional flow rate data alone, and the combination of
fractional flow rate and pressure data. For the synthetic model,
pressure data alone provides coarse information primarily near
the wells, whereas the fractional flow data provide more in-
formation on interwell spatial reservoir permeability. Inverting

pressure and fractional flow data jointly lead to significant im-
provement of the representation of reservoir heterogeneity and
reduction in uncertainty. The paper shows that the accuracy of
reservoir performance predictions at wells can be dramatically
improved by building the models using the historical produc-
tion data from those wells. However, if only production data
have been used to build a model, the results also indicate that
the prediction capability may be limited for new wells drilled
in areas outside the influence region of existing wells or under
flow or well conditions different from those used for the inver-
sion. Future research directions are discussed at the end.

Introduction
Reliable predictions of future reservoir performance require
reservoir models that honor all available data including con-
ceptual geological data, seismic data, core data, well log data,
DST~ data, well test data, and historical production data.
Each source of data carries information, at different scales and
with varying precision, related to the true distribution of petro-
physical and fluid properties in the reservoir. The challenge of
reservoir characterization is to integrate all data sources.8 Inte-
grating all the available data by construction in numerical geo-
logical models will improve the predictive power of the models
and make it possible for reservoir engineers to more quickly
perform flow simulation studies. The production data is partic-
ularly important due to its close relationship to what we want
to predict: fractional flow rates, pressures and recovery factors
for example. In the proposed modeling scheme of Gouveia et
al,8 the production data is inverted to a coarse-scale permeabil-
ity representation which is then combined with the seismic and
other data through an optimization procedure to build the finer-
scale reservoir model.

The procedure for generating a permeability modeI from
production data usually begins with an inverse technique
because the data are non-linearly related with reservoir
permeability through the flow equations.lo,lz.ls,ls An itera-
tive geostatistically -based inverse technique, called the self-
calibration (SSC) method, has been developed and previously
shown to be quite efficient for constructing multiple equiproba-
ble reservoir models that honor single phase historical pressure
data!7’17’19 The unique features of the SSC algorithm are: (1)
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concept of master point that reduces the parameter space to be
estimated in the optimization process; (2) propagation through
kriging that accounts for spatial correlation of permeability per-
turbations; and (3) fast computation of sensitivity coefficients
of pressure within the single-phase flow simulation run.

Application of the SSC requires a variograrn model that
defines the propagation of the permeability perturbations. In-
tegration of historical single phase pressure data was shown
important for identifying large scale trends of permeability
variation in reservoir models, particuhu’ly the high permeabil-
ity channels or low permeability barriers and variations near
wellbores.lc’17’22’23Historical pressure data may also be in-
verted to derive spatially varying probability distributions of
pay-facies proportion using the SSC method.20

In this paper, we extend the SSC technique to integrate mul-
tiple phase production data: the fractional flow rate data, such
as watercut or GOR from production wells. A streamline-based
multiphase flow simulator *‘2’3’14’15is adapted for fast flow sim-
ulation. Also the ID analytical streamline solution is utilized
for fast calculation of sensitivity coefficients of fractional flow
rate and thus for fast inversion for the reservoir properties. me
objective function to be minimized in the extended SSC is in
the form ofi

where 5(wP, tp) and P(wp, tp) areAtheobserved and simulated
pressure at well Wp at time tp. f(wf,tf)and $(wf, tf) are
the observed and simulated fractional flow rate at well Wf at
time tf. Wp(wp, tp)and Wf (w~, tj) are weights assigned to
pressure and fractional flow rate data at different wells and at
different time. n~p and n~~ are the number of wells that have
pressure and fractional flow data. ntp and nt~ are the number
of time steps for the observed pressure and fractional flow data.

A gradient method is used to minimize the objective func-
tion, which requires the sensitivity coefficients (derivatives) of
pressure and fractional flow of wells at observed time steps with
respect to the permeability changes at the master locations. The
method for computing sensitivity coefficients of pressure has
been developed previously, i.e., they are obtained as part of
single phase flow simulation run.17 The sensitivity coefficients
of fractional flow rate are computed by a fast streamline-based
approach, i.e., they can be obtained by simply book-keeping
streamlines in the simulation field by using the 1D analytical
flow solution along strearnline.2* The key assumption for this
method is that streamline geometry is relatively insensitive to
small perturbations of the permeability field that are generated
within any one outer SSC iteration loop.

In the following sections, we will first briefly review the
method for computing sensitivity coefficients of fractional flow
rate with the streamline-based method. This method is then im-
plemented in the SSC inversion to construct reservoir perme-
ability models that match the observed pressure and fractional
flow rate field data, while preserving consistency with the spa-

tial statistics. A synthetic example is used to demonstrate the
efficiency and accuracy of this approach. The importance of in-
tegrating fractional flow rates is illustrated by comparing the in-
verse results using different data sets to the true reference fields.
me accuracy and uncertainty of reservoir performance predic-
tions are compared as well,

Computation of Sensitivity Coefficients
As stated above, an efficient method for obtaining the sensi-
tivity coefficients is key for fast and feasible inversion. A fast
streamline-based method for computing the sensitivity coeffi-
cients was presented in detail in our previous paper.2’ Here, we
summarize the analysis. Under the streamline-based flow sim-
ulation framework, the completed set of sensitivity coefficients
of fractional flow rates at all master points can be obtained si-
multaneously by using a lD analytical solution along stream-
lines. This lD analytical solution expresses the relationship be-
tween the fractional flow rate and time-of-flight of the stream-
line. The permeability perturbations at all master locations are
considered jointly in the calculation of sensitivity coefficients.
(In the current implementation, we assume that the porosity is
known, and we consider two phase flow with unit mobility ra-
tio and matched density). The fractional flow rate for a given
production well wf at time tf is expressed as:l

f(wf , tf ) = z::{ 9:Jf:1(tf ) (2)

x::: q:l

where qgl is the total flow rate associated with streamlines, and
j~l (tf) is the fractional flow rate of streamline s at time tf.
n~, is the total number of streamlines arriving to well wf. The

derivative of f(wf, tf)with respect to the permeability pertur-
bation at master point j is then:

The fractional flow fjl (tf ) along a streamline s is a func-
tion of time-of-flight of the streamline TS. For tracer flow (unit
mobility ratio and matched fluid density), the analytical form of
f:l(tf )-is:

(4)

which can be approximated by a Gaussian cumulative function
as:

hence,

(5)

(6)

G(~) is the Gaussian distribution function with mean 1 and

small (< 0.001) variance.
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Thus, the sensitivity coefficient of fractional flow rate is
the function of sensitivity coefficients of time-of-flight of all
streamlines. It can be shown that the sensitivity coefficient of
time-of-flight of streamline s to the permeability perturbation
at master point j is the following,zo see Figure 1:

where ArS,c is the time-of-flight of streamline s crossing cell
c. Tog, g = 1, .... 4, are the transmissibilities for the four inter-
faces of cell Ointersected by streamlines, pl, 1 = O, 1, ....4, are

the pressure at the cell O and its surrounding cells. ‘~~~” and
OAT,,=

8P1
can be computed from the semi-analytical expressions

of&e-of-flight crossing a cell.5’1’ ~ is the sensitivity coef-

ficient of pressure with respect to permeability change at master
location j.

Hence, the calculation of sensitivity coefficients of frac-
tional flow is reduced to a simple book-keeping exercise for
streamlines, which is both mathematically simple and compu-
tationrdly fast. The completed set of required sensitivity coef-
ficients are obtained simultaneously within a single simulation
run. More importantly, the spatial correlation of permeability
perturbations at multiple master locations is accounted for. This
method was shown to be substantially faster and more accurate
than the more traditional perturbation method.20

The main features of this new method may be summarized
as follows:

1.

2.

3.

4.

The fractional flow rate at a production well is the sum of
of the fractional flow rate of all contributing streamlines.

The sensitivity coefficient of fractional flow rate for each
streamline is a function of sensitivity coefficient of time-
of-flight and a derivative of the 1D analytical solution
along the streamline.

The sensitivity coefficient of time-of-flight is separated
into a pressure part and a permeability part along the
streamline. The pressure part comes from a single phase
flow solution, which can be obtained as part of the single
phase flow simulation run. The permeability part comes
from the kriging algorithm used to propagate the perme-
ability perturbation to all grid cells.

The derivatives of time-of-flight with respect to transmis-
sibility and pressure are obtained from the analytical ex-
pression of time-of-flight of the streamline.

This method has been implemented within the SSC frame-
work. The current implementation considers unit mobility ratio
and matched fluid density. A finite-difference method is used to
solve the single phase flow equation for pressure field and sen-
sitivity coefficients of pressure at all cells in the model. Mas-
ter point locations are randomly selected with their locations
changed every few (3-4) outer iterations. The flow equations are

solved, and the streamline geometries are updated every outer
iteration.

Note that this method can be extended to compute the sensi-
tivity coefficients of saturation when inverting saturation data.
It can also be extended to compute the sensitivity coefficients
to porosity if we are interested in inverting porosity field from
production data. Also application of the proposed method in
more practical multiphase flow conditions is possible, such as
two-phase immiscfiIe~isplacement, three phase flow, compo-
sitional flow, or when well conditions change during tie course
of production. 1

Example
In this section, we demonstrate the applications of this
streamline-based SSC inverse method using a synthetic reser-
voir model. We compare matches of production data from per-
meability models inverted from pressure data only, fractional
flow rate data only, and pressure and fractional flow rate data
together.

Figure 2 shows a 2-D reference field (50x50 grid with cell
size 20 feet x 20 feet) and the corresponding fractional flow
data at four producing wells. The injection rate at ,the central
well is 1600 STB/day, and the production rate for the 4 produc-
ing wells is 400 STB/day/well. This synthetic field was gener-
ated by using the Sequential Gaussian Simulation code, sgsim.6
The porosity is kept constant as # = 0.2. Other reservoir pa-
rameters are: thickness h = 100 feet, viscosity p = 0.3 cp,
and compressibility c = 10–5 l/psi. The main spatial variation
features in this reference field to note are: (1) a high permeabil-
ity zone and a low permeability zone in the middle of the field;
(2) high interconnectiivity between the injection well (W5) and
producing well W3; (3) low interconnectivity between the in-
jection well and producing wells W2 and W4.

Pressure data at the five wells and the fractional flow rates
at the four production wells up to 1800 days (dashed line in Fig-
ure 2 ) are used for inverting the permeability model. Figure 3
shows three initial permeability fields (top row) and the result-
ing fields updated by SSC for three cases: inversion of pressure
data only at the five wells (second row), inversion of fractional
flow rate data only at the four production wells (third row), and
joint inversion of pressure and fractional flow rate data (fourth
row). The reference field is given at the bottom for comparison.
The decreases of the two components of the objective function
with number of iterations for the three realizations are given
in Figure 4. The same 25 randomly selected master points are
used for all realizations. The variogram calculated from the
exhaustive reference field is used for propagating the perturba-
tions from the master locations to the entire field. The refer-
ence histogram is explicitly honored in all updated realizations.
Twenty SSC iterations are used for obtaining the final perme-
ability models in all realizations. me CPU time for generating
one realization is about 10 minutes (SGI Indigo workstation)
for the case of matching both pressure and fractional flow rate
data together (i.e., the fourth row in Figure 3). Less CPU time is
required when matching either pressure or fractional flow rate
data alone.

From Figure 3, we see qualitatively that the initial perme-
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ability realizations that are generated with sgsim using the cor-
rect variogram and histogram poorly reproduce the reference
field. As the initial models are updated by conditioning to pro-
duction data, the model representation improves. The closest
results are those inverted jointly from both pressure and frac-
tional flow rate data (the third row of Figure 3). Figure 4 gives a
quantitative comparison of the objective function convergence
for the updated models. When only pressure data are used to
invert the permeability field (first row), the fractional flow com-
ponent of the objective function is not reduced to low values.
Similarly, when only fractional flow rate data are used to invert
the permeability field, the pressure component of the objective
function is not reduced to low values. It is only when both pres-
sure and fractional flow rate data are inverted jointly that the
resulting permeability models closely reproduce both pressure
and fractional flow rate data, i.e. both components of the objec-
tive function monotonically decrease to close zero (third row).

Figure 5 compares simulated and observed pressure and
fractional flow rate data corresponding to the initial model and
each of the converged cases for the first realization of Figure
3. For the initial permeability model, both pressure and frac-
tional flow rate data are very poorly matched (first row). When
only pressure data are used, the pressure data are almost exactly
matched but fractional flow rate data are poorly matched (sec-
ond row). And when only fractional flow rate data are used,
the fractional flow rate are matched fairly well, but the pres-
sure data are poorly matched (third row). Both pressure and
fractional flow rate data are accurately matched when both data
sets are jointly used to constrain the model (fourth row).

An overall comparison of the inverse results from the dif-
ferent cases is given by the ensemble fields calculated from 200
rerdizations, see Figure 6. For the initial fields, no additional
spatial information is retained in the ensemble fields except the
mean (6.0) and variance (3.0) everywhere. When pressure data
alone are inverted, there is reduced uncertainty in the areas im-
mediate to the well locations (second row). When the fractional
flow rate data alone are inverted, the uncertainty is reduced in
the interwell areas (third row), particularly in the major band of
high permeability, i.e. with the best well response. Of course,
the lowest uncertainties over more of the interwell region are
obtained when both pressure and fractional flow rate data are
inverted (fourth row). The joint inversion leads to reproduction
of the major spatial variation features in the reference field with
much less uncertainty as compared to the other two cases.

Sensitivity to initial models and variograms To test and il-
lustrate the robustness of the inverse algorithm to different input
models, we use the previous example reference field and start
from initial models that have completely different features from
the reference field, then use SSC to update them to match the
pressure and fractional flow rate data. We also investigate the
sensitivity of the inverse results to two different variograms.

Figure 7 shows three models updated from an uniform per-
meability field and two purely random permeability fields. The
relative decreases of both components of the objective func-
tion are also given at the bottom row of this figure. The three
final updated models (after 20 SSC iterations, using the refer-
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ence field variogram) reproduce the spatial variation patterns
of the reference field very well as shown on the top of the fig-
ure. The model updated from the uniform initial model displays
smoother variations than the true field, while the models up-
dated from the purely random initial fields display more fuzzy
small scale features with the correct large scale patterns. All up-
dated models accurately match both the pressure and fractional
flow rate data with objective functions close to zero.

Figure 8 shows the inverse results updated from an uniform
initial field with quite different anisotropic variograms: one var-
iograrn with the major correlation in the vertical direction, and
the other with the major correlation in the horizontal direction.
Although the final results have a different appearance than the
reference field, due to the variogram structure, they both still
correctly identify the relative locations of high and low per-
meability regions, as well as the spatial inter-connections be-
tween well pairs. Both pressure and fractional flow rate data
are matched in both models with good convergence.

Thus the method is robust to the initial model and its under-
lying variogram structure.

Value of additional well data To illustrate the added value
of additional data, we use the same reference model as above,
but add production data from four wells in a nine-well pattern.
Pressure data from the nine wells and fractional flow rate data
up to 1800 days from the eight production wells are used for
inversion. The two inverted permeability fields, the ensem-
ble fields of mean and standard deviation from 200 initial field
realizations are shown in Figure 9. These models reproduce
the reference permeability model with much less uncertainty as
compared to the results with data from five wells (Figure 3).
Thus, additional well data, as expected, yield more constrained
inverse results.

Predictions of Reservoir Performance

In the previous sections, we compared the quality of the match-
ing of pressure and fractional flow rate data with the historical
data. In this section, we compare reservoir performance predic-
tions from inverted fields with the performance of the reference
model. We use the five-well synthetic example cases to pre-
dict the fractional flow at the four production wells up to 6600
days with the same well conditions (i.e., the same injection and
production rate as used to match the models).

The first case is that of the initial fields where neither pres-
sure data nor fractional flow rate data are matched. Figure 10
shows the predictions for fractional flow at the 4 production
wells from 30 realizations. The solid lines are the results from
the reference field. The predictions are poor, being neither ac-
curate nor precise

Figure 11 shows the predicted fractional flows for 30 re-
alizations when the pressure data at the five wells are matched.
There is clear improvement compared to the initial fields. How-
ever, these predictions are still somewhat poor in accuracy and
have large uncertainty. This indicates that matching single
phase pressure data may not be sufficient for realiable predic-
tion of multiphase flow: more information is required.

When the permeability models match the fractional flow
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rate data up to 1800 days at the four wells, the predictions are
shown in Figure 12. The predictions of fractional flow at the
four wells are dramatically improved. This is because the same
type of early time data at the same wells are matched.

The best predictions of reservoir performance are obtained
by using the reservoir models in which both pressure and frac-
tional flow rate data (again up to 1800 days) at the same wells
are matched, see Figure 13. Note that incorporating pressure
data when matching fractional flow rate data yields a better
match of fractional flow rate than using only fractional flow
rate data (compare the matches for fractional flow rates before
1800 days in Figures 11 and 12).

Next, we investigate the results for reservoir performance
predictions for a set of wells which were not included in the
production data inversion. Using the synthetic example with the
nine-well pattern, we predict the fractional flow rate at wells 6
to 9 (up to 6600 days) using the permeability realizations gener-
ated by matching pressure and fractional flow rate data at wells
1 to 5 (up to 1800 days only), see Figure 9. Figures 14 and
15 show the histograms of the first water breakthrough times
and times of 8070 watercut predicted at wells 6 to 9 from 200
realizations: the left hand side histograms are from initial per-
meability fields in which no production data are matched; the
right hand side histograms are from the permeability fields that
match pressure and fractional flow rate data at wells 1 to 5.

Predictions from the initial realizations with no production
data matched are inaccurate with large uncertainty. When the
pressure data at wells 1 to 5 and the fractional flow rate data at
wells 1 to 4 are integrated, the resulting predictions at wells 6
to 9 are improved considerably. This improvement, however,
is not as dramatic as compared to the previous example when
the early production data at the same wells being predicted are
matched. A number of factors will influence the ,ability to pre-
dict performance from wells, such as infill, side-track, or step-
outs, based on inversion of production data from another set of
wells. These factors include the well spacing, reservoir hetero-
geneity, the frequency and accuracy of the pressure and flow
breakthrough data.

Summary and Future Work
me SSC method 21for inverting pressure data at wells to multi-
ple realizations of reservoir permeability has been extended for
inversion to match historical pressure and multiphase fractional
flow rate data. Adaptation of a streamline-based multiphase
flow simulator for fast forward simulation, and development
of an effcient methodology of computing the sensitivity coef-
ficients of fractional flow rate to permeability were the keys
to the new method. This new method decouples the multiple-
dimensional flow problem into multiple lD problems along
streamlines. Using the analytical 1D flow solution along the
streamline, the completed set of sensitivity coefficients of frac-
tional flow rate are obtained simultaneously by book-keeping
all streamlines with only one single phase flow simulation. A
consequence of the approach is that the perturbations at all mas-
ter locations are jointly considered through kriging, which im-
proves the accuracy and robustness.

Applications of the extended SSC method were demon-

strated using a synthetic example. Comparisons were made
among the results inverted from different sets of production
data: pressure data only, fractional flow rate data only, and both
pressure and fractional flow rate data.

Results show that production data carry important informa-
tion on the spatial variation of reservoir properties, and more
spatial variation patterns can be identified with less uncertainty
by integrating more production data, While pressure data carry
information on relatively large scale trends around the well,
fractional flow rate data provide additional information on the
spatial connectivity between well pairs. Matching pressure or
fractional data alone can result in high uncertainty in the inverse
results. Integrating both pressure and fractional flow rate data
jointly significantly improves the reservoir heterogeneity repre-
sentation over those when only pressure or fractional flow rate
data are matched alone.

Dramatic improvement in reservoir performance predic-
tions is observed when production data are integrated with more
accurate predictions and less uncertainty. Results from this
study als~ show that:

●

●

●

matching pressure data, although improving the predic-
tion results, may not be sufficient for reliable predictions
of fractional flow, even at the same wells in which the
pressure data are matched.

good reservoir performance predictions can be obtained
when the early time production data at the same wells
with similar flow and well conditions are matched.

poor predictions may be obtained when the early time
production data at the wells being predicted are not inte-
grated, or well and flow conditions are changed between
the calibration stage and prediction stage. This is particu-
larly true when the number of wells used for conditioning
is small and is consiste~t with the findings by Huang et.
al.9

Future work includes:

● Extend the algorithm to true two-or three-phase flow that
handles mobility changes during the course of produc-
tion. In such cases, pressure solution and thus stream-
line geometry need to be updated with time through the
simulation. The number of pressure solutions required
will depend on the degree of nonlinearity of the problem.
Studies have shown that only a few pressure solutions are
sufficient for most displacement problems dominated by
the heterogeneity of reservoir properties.1”*4

Provide changing well conditions, such as infill and re-
completion, over the production history.

Extend to full 3D to model production from multilayer
reservoirs with production rate profiles along the bore-
hole.

Extend the streamline-based method to integrate satura-

●

●

●

tion data from production wells or even from 4D seismic
data. 10
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Nomenclature

P
f
t
‘r
k
o
nm
nWP
ntP
Wp
nwf
ntf
Wf

pressure, psi
fractional flow rate
time, day
time-of-flight, day
permeability, md
objective function
number of master points
number of wells with pressure data
number of time steps for pressure
weight assigned to pressure data
number of wells with fractional flow rate data
number of time steps for fractional flow rate
weight assigned to fractional flow rate data
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Figure 7: Comparison of the inverse results using different initial models.
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Figure 8: Comparison of the inverse results using different variogram
models.

Figure 9: The reference field, two realizations of inverse results, the
ensemble mean and standard deviation maps for 200 realizations when
production data from 9 wells are used for inversion.
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Figure 10: Fractionrd flow rate predictions at the four production
wells from 30 initial permeability realizations. Thick lines are results
from the reference field.

Figure 11: Fractional flow rate predictions at the four production
wells from inversion of pressure data alone for 30 initird permeabil-
ity realizations. Thick lines are results from the reference field.
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Figure 12: Fractional flow rate predictions at the four production
wells from inversion of fractional flow data alone for 30 initial per-
meability realizations, Thick lines are results from the reference field.
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Figure 13: Fractional flow rate predictions at the four production
wells from joint inversion of pressure and fractional flow data for 30
initial permeability realizations, nick lines are results from the refer-
ence field.
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Figure 14: Comparison of the histograms of water breakthrough time
predicted at wells 6 to 9 using initial permeability fields (left column)
and updated permeability fields (right column) that honor pressure and
fractional flow rate data at wells 1 to 5. The bullets are the true times
from the reference field.
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Figure 15: Comparison of the histograms of time for 80% watercut
predicted at wells 6 to 9 using initial permeability fields (left column)
and updated permeability fields (right column) that honor pressure and
fractional flow rate data at wells 1 to 5. The bullets are the true times
from the reference field.
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