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Abstract
Reconciling data from different scales is a longstanding
problem in reservoir characterization.  Data from core plugs,
well logs of different types, and seismic data must all be
accounted for in the construction of a geostatistical reservoir
model.  These data are at vastly different scales and it is
inappropriate to ignore the scale difference when constructing
a geostatistical model.

Geostatistical scaling laws were devised in the 1960s and
1970s primarily in the mining industry where the concern was
mineral grades in selective mining unit (SMU) blocks of
different sizes.  These principles can be extended to address
problems of core, log and seismic data.  The adoption of these
classic volume-variance or scaling relationships presents some
challenges.  Some specific concerns are (1) the ill-defined
volume of measurement, (2) uncertainty in the small-scale
variogram structure, and (3) non-linear averaging of many
responses including acoustic properties and permeability.

We demonstrate the application of volume-variance
relations for upscaling and downscaling techniques to
integrate data of different scales.  Practical concerns are
addressed with data from a chalk reservoir in the Danish North
Sea. A direct sequential simulation algorithm accounting for
data at all scales is documented.

Introduction
Within the petroleum industry and many other fields where
geostatistical models are constructed, the treatment of data of
different scale is often ignored1.  The core and log data may be
averaged in the vertical direction to the scale of the modelling
cells2; however, this only partially addresses scale difference.
In other examples, a fine-scale model is constructed and then
numerically averaged to larger scale3-5. This may be applied in

a nested fashion due to computational limitations.  The direct
simulation of gridblock values conditioned to fine-scale data
carried out by cosimulation using cross-covariance between
fine- and coarse-scale values has been described6.

Notwithstanding the importance of accounting for data at
different scales, the use of geostatistical scaling laws has not
seen wide application in petroleum geostatistics.  This is due
mainly to unfamiliarity with the techniques and scaling laws.
Recalling and demonstrating such techniques will address this
unfamiliarity.

The scaling laws tell us how the variogram changes with
volumetric scale7.  As scale increases, the range of correlation
increases, the variance and variogram sill decrease, and the
nugget effect also decreases.

After a recall of theory, the application of scaling laws is
illustrated with a synthetic example and with real data from a
Danish chalk reservoir.  Core and well log data are used.
These data measure significantly different volumes. The
volume of the core measurement is well understood; however,
the volume of the interpreted well log derived porosity is less
well understood.  The statistics of each data type together with
analytical volume-variance relationships can be used to
quantify the volume of investigation of the well log data. An
illustration of the different scales (Fig. 1) shows that the
change of scale from core to log measurement volumes is
nearly as large as the jump from log volume to that of a
geological modelling cell.

The ultimate goal of this work is to illustrate how data of
different scales may be used simultaneously in the
construction of high-resolution geostatistical models.  When
the different types of data are all “hard,” in the sense that they
do not contain significant errors or uncertainties relative to the
property being modeled, it is possible to use block kriging.
Certain data types such as seismic contain uncertainties related
to the great distance of measurement and calibration of the
measured acoustic properties to the petrophysical properties of
interest.  In this case, it is necessary to use block cokriging.

Recall of Volume-Variance Scaling Relationships
Mining Geostatistics8 is the classic reference for volume-
variance scaling relationships.  The essential results are
recalled below.  Details and proofs may be found in the
original reference.
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Consider the fitted variogram model at arbitrary scale v,
where v often represents the small core scale:
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where γv(h) is the variogram model at the v scale, 0vC  is the

nugget effect, nst is the number of nested variogram structures

used to fit the variogram, i
vC  is the variance contribution of

each nested structure, i=1,…,nst, and ( )hiΓ  are the nested

structures consisting of an analytical function (spherical,
exponential, Gaussian, hole-effect, etc.) and six anisotropy
parameters (three angles and three distance ranges).  Note that
the “sill” of the analytical nested structure Γ is unity; the C
coefficients describe the variance contribution of each
structure.  The sum of the variance contributions is the
variance at the v-scale also known as the dispersion variance
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where D2(v,A) is the variance of volumes of size v in the entire
area of interest A.  The mean value at a larger (or smaller)
scale does not change, assuming arithmetic average.  The
variance, however, decreases as the volume increases; high
and low values are averaged out as the volume of investigation
or measurement increases.  As the variance decreases the
variogram structure also changes.  The variance contributions

i
vC  , i=0,…,nst, decrease.  The shape of each nested structure

( )hiΓ  may also change.

Experience has shown that the variogram shape change is
small.  The three correlation ranges increase as the averaging
volume increases; however, the actual “shape” of the
variogram changes very little.  The range at a larger volume V
increases as the increase in volume size (|V|-|v|) in each
particular direction:
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Depending on the shape of the larger volume V, the range may
increase in some directions and stay the same in other
directions.  Assuming the variogram shape does not change,

we have to quantify how the variance contributions ivC  ,

i=0,…,nst,  change.
It can be shown that the purely random component,

represented by the nugget effect, decreases with an inverse
relationship of the volume, i.e.,
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In this case |v| and |V| represent the volume of each scale,
respectively.

Average variogram or “gamma-bar” values are used to
determine how the variance contribution of each nested
structure decreases:

),,(1

),,(1
i

i
i
v

i
V

vv

VV
CC

a

a

Γ−
Γ−⋅= (5)

The “gamma-bar” notation represents the average variogram
for vectors where each end of the vector independently
describes the volume V or v.  In 3D the gammabar values may
be expressed as the infamous sextuple integrals of early
geostatistics.  The modern approach, however, is to calculate
all gamma-bar values numerically. For the present
investigation the calculation of the gammabar values is
performed with a program using a cylindrical shaped volume.
This has been found the most realistic volume geometry in the
case of working with well data from cores and logs. For other
shapes of the scaling volumes, a version with box shaped
volume is available.

Scaling Relations with synthetic example
In order to show the application of the scaling rules for data
obtained at different scales, we have generated a synthetic
fine-scale 1-D model. The program SASIM9 based on
simulated annealing has been used to simulate the model using
the input of a target histogram and a variogram with a
spherical variogram model. The scale of the 1-D modeling cell
has been chosen to be 0.02 m in order to mimic the fine scale
geological information normally available from core plugs.
The resulting model is illustrated in Fig. 2.  The block average
values for each non-overlapping 0.5 m segment are calculated
from the fine scale data. The resulting averaged data is shown
in Fig.2.

The histograms at the two different scales are shown in
Figs. 3 and 4.  The variance is reduced significantly from 3.57
to 1.99 due to the averaging. The variogram model used for
simulating the synthetic case is a spherical model with 0.54 m
range and zero nugget. The sill value of 3.6 is supplied by the
target histogram. The simulation is seen to reproduce nicely
the variogram  model (Fig. 5).

Derivation of Point-Scale Variogram
The scaling laws developed above may be applied on each
nested structure in the variogram. As the first step the point
scale variogram must be deduced. The scaling laws are
concerned with the changes to the nugget effect, the variogram
range and the sill. For the downscaling to point-scale from our
data, we need to consider all three elements.

The fine-scale data has no nugget effect in the correlation
structure. Therefore the point-scale variogram is assumed to
have no nugget.

For the spherical structure the correction to point
variogram range ap based on the fine-scale range av is:  ap= av –
(v-p), see equation (3) above.  Where p = point scale,
which is zero and v = fine-scale, which is 0.02 m.  Thus, the
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corrected range for the spherical nested structure is = 0.54 -
(0.02 - 0) = 0.52 m

The sill of each basic structure is corrected according to
equation (5) presented above.  The gammabar program is

used to calculate the needed ),( vvΓ  values.  The mean

variogram value at the point scale is, of course, zero.  For all
calculations of mean variogram values we assume one
dimensional averaging of the data.

The value for ),( vvΓ  for the spherical structure can be

calculated with the gammabar program, using the point-scale
variogram description as unit variogram between 0 and 1 with

range 0.52 m as derived above. For calculation of ),( vvΓ , the

volume v is defined as the fine scale dimension of 2 cm,

giving a ),( vvΓ sph value of 0.021, and a resulting point-

scale sill pC  of 3.65 for the spherical structure, as compared

to the fine-scale sill value of the spherical structure of 3.57.
In summary the point-scale variogram structure is

therefore defined as having zero nugget and a spherical
structure with range 0.52 m and sill of 3.57.

Application of Scaling Laws for Prediction of Coarse-Scale
Variogram from Fine-Scale Variogram
The theoretically derived variogram for coarse-scale may be
calculated and compared to the experimental variogram from
the block-averaged coarse-scale data.  The closeness of the
match is a measure of the efficacy of the scaling relations
described above.

As stated above on equation (3), the range of the coarse-

scale variogram range Va  may be calculated based on the

fine-scale range va , that is, )( vVaa vV −+= . Where v

is the fine-scale of dimension 0.02 m  and V is the coarse-scale
at 0.50 m resolution. This results in a range correction for the
variogram from the fine-scale to coarse-scale as follows:

Va   = 0.54 + (0.50 – 0.02) = 1.02 m

The sill of each basic structure in the variogram model is

modified as in equation (5).  The required ),( vvΓ (0.02 m)

and ),( VVΓ (0.5 m) values can be calculated with the

gammabar program, using as input the point-scale variogram
which has been derived earlier from the core data.  For the

structure, ),( vvΓ = 0.0213 and ),( VVΓ = 0.434.  The

variance for the fine-scale data for the structure vC = 2.82, and

we therefore derive the log-scale sill for the structure VC =

2.82*(1-0.434/1-0.0213) = 2.06. The comparison of the
theoretically predicted coarse-scale variogram and the
experimental variogram obtained from the block averaged data
is shown in Fig. 5, having a very good agreement.

In order to further outline the performance of the scaling
laws, the procedure has been applied at other coarse scale

resolutions of 1.0, 2.0 and 4.0 m block averages. The
comparison between the theoretical predictions and the
experimental variograms gives a near perfect match as is
shown in Fig. 6.

In order to illustrate the evolution of the variogram, the
decrease in sill (variance) is shown as a function of the
averaging volume in Fig. 7. However, this function is only
valid for this particular model construction, and heavily
depends on the variogram structure at the fine scale level.

The synthetic fine-scale model has also been used to
investigate how non-overlapping volume averaging influences
the upscaling of variograms. For this purpose a moving 0.5 m
window filter has been applied with a simple square filter
function on the fine scale data. The resulting experimental
variogram shows that the variogram structure is changing from
the original fine scale spherical model into a more Gaussian
shaped model for the moving average data as seen in Fig. 8.

Scaling Relations with Real Data
Data from an interval in the MFB-7 well from the Dan Field in
the Danish North Sea will be considered. The Dan Field is an
Upper Maastrichtian to Lower Paleogene chalk limestone
reservoir, and is characterised by high porosities (30-40 %)
and generally low permeabilities (1 mD)10. From the wellbore
has been extracted a section of data covering approximately 18
m of vertical section, see Fig. 9. Since the well is deviated
approximately 32 degrees, any length measures derived from
the original wellbore have to be adjusted by a factor 0.84
(=cos 32°). This affects the calculation of the scaling factors
and the averaging volume of the logging tool, and we have
chosen to work in the space of TVD (True Vertical Depth).
This decision is based on having a good horizontal continuity
in the layered formation drilled, and therefore the variability
within the deviated well bore is the same as in the projected
vertical section, see Fig. 10.

The section shows cyclic porosity variations probably
caused by climatic variations during deposition of the pelagic
chalk material11.  The core measurements represent a volume
of about 5x2x2 cm (vertical resolution 0.02 m).  The log
measurements represent an average over approximately 0.60
m (2 ft.) of the well-bore (corresponding to a 0.50 m vertical
section in this particular example), and with an uncertain
investigation depth probably around 0.25 m.

As expected, the core plug porosity values show greater
variability than the log porosity values.  The histograms shown
in Figs. 11 and 12 illustrate the difference.

The core and well log porosity values are both considered
excellent measurements with little measurement or
interpretation error.  Figure 13 shows a cross plot of the core
versus log porosity values.  The scatter on this plot is
attributable both to the different measurement volumes, as
well as to the different physics behind the measurements.  The
cross plot of core and log porosity shows a fair correlation
between the two variables.  The comparison shows that the
well log data does not represent some of the high porosity
layers recorded by the core analysis samples.
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The core-porosity semivariogram shows clear cyclic
variations with a period at about 1.90 m (Fig. 14).  The
variogram model has no nugget effect and two nested
structures: (1) a spherical structure with sill equal to 2.82 and
range of 0.54 m, and (2) a hole effect model with amplitude
1.2 and peak at 0.95 m.  The fit of this nested model is quite
good.  Figs. 15 and 16  show the two elementary nested
structures to be considered in the scaling relationships.

Derivation of Point-Scale Variogram
The scaling laws developed previously are applied on each
nested structure in the variogram.

The core-scale data shows no nugget effect.  Detailed
investigations at the milimeter-scale also shows no nugget.

For the spherical structure the correction to point
variogram range ap based on the core-scale range av is: ap= av –
(v-p), see equation (3) above.  Where p = point scale,
which is zero and v = plug scale, which is 0.02 m.  Thus, the
corrected range for the spherical nested structure is = 0.54 -
(0.02 - 0) = 0.52 m

For the hole effect structure, the wavelength for the
periodic structure is not affected, and the peak distance used
for the modelling is kept constant at 0.95 m for the point scale
variogram.

The sill of each basic structure is corrected according to
equation (5) presented above.  The gammabar program is

used to calculate all needed ),( vvΓ  values. For all calculations

of mean variogram values we assume only one dimensional
averaging of the data.  This entails that our well data are only
averaged in the vertical direction, which is a fair assumption
given that we have a layered formation with large horizontal
continuity.  Therefore, the investigation depth is not to be
considered in this case.

The value for ),( vvΓ  for the spherical structure can be

calculated with the gammabar program, using the point-scale

variogram description. For calculation of ),( vvΓ , the volume

v is defined as the core-plug volume of 5x2x2 cm with a

vertical length scale measure of 2 cm, giving a sphvv ),(Γ
value of 0.021, and a resulting point-scale sillpC  of 2.88 for

the spherical structure, as compared to the core-scale sill value
of the spherical structure of 2.82.

The same procedure is used for the hole effect variogram

for the amplitude scaling, giving holevv ),(Γ  = 0.0005, and

therefore a virtually unchanged variance contribution of 1.2
for the point scale variogram.

In summary, the point-scale variogram structure has zero
nugget and two nested structures: (1) a spherical structure with
range 0.52 m and sill of 2.88, and (2) a hole effect structure
with peak at 0.95 and a variance contribution of 1.2.

Application of Scaling Laws to obtain variance at
coarse-scale
The point (•) variance within an arbitrary volume v is equal to

the mean value γ of )(hγ  for all h  and all directions within

that volume, where )(hγ  is the point-scale variogram

consisting of all nested structures, that is,

),(),(2 vvv γσ =• (6)

furthermore, given a larger region R , the additivity of
variance entails that,

),(),(),( 222 RvvR σσσ +•=• (7)

for any volume v.  In words, the variance of points • in a
region R  is equal to the variance of points within a larger
volume v plus the variance of that larger volume v within the
region R .

Let’s consider two different volumes v  and V  (e.g. core

and log scale volumes).  ),(2 R•σ  is the global stationary

point scale variance.  Applying relation (7) to volumes v  and

V , the experimental average variogram ),( VVγ  for the log-

scale volume may be expressed as:

),(),(),(),( 22 RVRvvvVV σσγγ −+= (8)

In our case:

),(),( vvVV γγ = + 4.02 - 2.23

Now ),( vvγ  can be calculated with the gammabar program

given the real point scale variograms as defined earlier, and as
the sum of the contribution from the two structures in the

nested model, we obtain the experimental ),( VVγ as:

),( VVγ = ),( vvγ + 4.02 - 2.23

= sphvv ),(γ  + holevv ),(γ  + 4.02 - 2.23

= 0.061 + 0.0006 + 4.02 - 2.23  = 1.85
Which then gives us an independent assessment of the average
variogram value within log-scale volumes.

Conversely, if uncertainty exists about the averaging
volume, the volume variance scaling laws may also be applied
to check the volume V for the coarse-scale data collected, now

that we have an independent ),( VVγ value.

Assessment of Tool Investigation Volume
Given the small-scale core data variogram and the
experimental log-scale variogram we can determine the
volume of measurement of the well-log.  This volume is
determined in an iterative fashion until the gammabar
prediction of variance matches the actual well log-derived
variance.
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Provided we have established a reliable estimate of the
point-scale variogram it is possible to calculate the theoretical

),( VVγ  for a range of different volume scales.  Then, the

actual volume scale can be determined where the theoretical

),( VVγ  matches the experimental ),( VVγ .

Applying this procedure with the point-scale variogram
model derived above leads to the results in Fig. 17.  The cross

plot shows that the experimental value for ),( VVγ  of 1.85

matches the theoretical values at a scale of 0.62 m.
This volume of 0.62 m is the measure of the vertical

averaging, and has to be calculated back to the tool
measurement geometry in the inclined wellbore. This gives an
effective tool resolution of 0.74 m, which is somewhat close to
the 0.60 m that is predicted from the physics of the logging
tool, which is a LDT (Litho-Density-Tool). The tool resolution
is reported to be 0.30 m (= 12 inches); the measurements are
recorded at every 0.15 m, and the effective resolution in the
logged data is therefore usually considered to be around 0.60
cm due to the tool movement. The discrepancy between the
two tool resolution estimates (0.74 vs. 0.60 m) is explained by
the lack of the additional variance that would exist in the true
density data that forms the basis for the log interpretation. This
variance in the density data would exist at the tool resolution
volume, and will show up on a cross plot of measured bulk
density and measured porosities for a given formation.
However, for the practical log-interpretation a regression is
performed and the log-interpreted porosity is developed via an
equation maybe incorporating some lithology correction and
noise reduction effects. Therefore the derived log porosity is a
smoothed version of the true porosity distribution even if it
was quantified over the tool volume scale average, and this
smoothing causes us to believe that the tool is larger than the
actual physical tool. The smoothing effect is also seen relating
back to Fig. 9 where deviation between the core and log values
is seen in some locations.

This illustrates that the comparison of different data types
therefore also involves cross-scaling in addition to up- or
down-scaling as it has been outlined by Corbett et al.12. The
cross-scaling is the determination of a relationship between
two different physical properties, whereas up-scaling is the
determination of an effective (or pseudo) property at a scale
larger than that of the original measurement. The definition of
these terms is a help to separate the impact of geology (largely
up-scaling) from that of the physics (largely cross-scaling) in a
more systematic manner 12.

The moving average effect for the density logging tool
used causes the averaged values captured with the tool to be
derived from overlapping volumes, which might not fully
satisfy the basic assumption behind the scaling rules that is
valid only for non-overlapping volumes. This might have
consequences also for the shape of the variograms for the
different data types. The experimental variogram for moving
average values tends to behave like it has an underlying
gaussian model, even if the original fine-scale data is
honouring a spherical model. In practise it means that in cases

where the log data is modelled with a gaussian variogram
model, the derived point-scale variogram for scaling purposes,
or any variograms at smaller scales, could be considered to
have a spherical model.

Prediction of Log-Scale Variogram from the Core-
Scale Variogram
The theoretically derived variogram for log-scale may be
calculated and compared to the experimental variogram from
log-scale data.  The closeness of the match is a measure of the
efficacy of the scaling relations described above.

As stated above in equation (3), the range of the log-scale
variogram range aV  may be calculated based on the core-scale
range av. That is, aV=av+(|V|-|v|), where v is the core-scale of
dimension 0.02 m  and V is the coarse-scale at 0.50 m
resolution. In this context we refer to the tool resolution of
0.60 m converted into 0.50 m the TVD space. This results in a
range correction for the spherical structure from the core-scale
to log-scale as follows:

sphaV   = 0.54 + (0.50 – 0.02) = 1.02 m

For the hole effect structure the peak distance is not
changed from the original 0.95 m.

The sill of each basic structure in the variogram model is

modified as in equation (5).  The required ),( vvΓ (0.02 m)

and ),( VVΓ (0.5 m) values can be calculated with the

gammabar program, using as input the point-scale variogram
which has been derived earlier from the core data.  For the

spherical structure, sphvv ),(Γ = 0.0213 and sphVV ),(Γ =

0.434.  The variance for the core data for the spherical

structure sphCv = 2.82, and we therefore derive the log-scale

sill for the spherical structure sphCV = 2.82 *(1-0.434/1-

0.0213) = 1.63.

Likewise for the hole effect structure, holevv ),(Γ =

0.00049 and holeVV ),(Γ = 0.207.  The variance contribution

for the core data hole effect  holeCv = 1.2, and we therefore

get the log scale sill for the hole effect structure:
holeCV = 1.2 *(1-0.29/1-0.00036) = 0.97.

The total sill value for the log scale data is predicted as the
sum of these two contributions of 1.63 and 0.97 = 2.60, which
compares not quite with the actual sill of 2.23 found in the
actual log porosity data set. As explained earlier, the
theoretically derived variance is higher than the measured
variance because of the error or additional variance that is
filtered out during the conversion from measured bulk density
in the formation via the wireline-log interpretation routine.
The difference amounts to 14 % in this case, which we think
can easily be explained by the missing error in the density
measures.

The theoretical variogram model derived for the log-scale
is compared to the experimental data from the log-scale data,
see Fig. 18. In order to illustrate the effect of the cross-scaling
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uncertainty, the figure is showing both the theoretical
prediction of the variogram based on 0.50 m vertical averaging
corresponding to the normally accepted 0.60 m effective tool
resolution, and a second variogram is based on the estimated
vertical averaging volume of 0.62 m  (= 0.74 m tool
resolution).

Simulation accounting for multiple scales
Rigorous data integration calls for simultaneously using data
from different scales in the construction of a numerical model.
This section presents a program, dssim_ms , for direct
sequential simulation (DSS) with multiscale data.

This program performs DSS with multiscale data assuming
linear averaging.  Each input data value is “tagged” by a shape
factor and a volume.  The shape factor species a rectangular
parallelipiped or a cylindrical volume.  The volume is
specified by three length scales oriented with the principal
X,Y,Z grid or by a radius in the X-Y plane and a length scale
in the Z direction. An arbitrary number of different data-scales
may be used to create realizations at another, different,
volume-scale. The histogram at the volume scale being
simulated must be specified. In practice, this is derived from
the data using an affine or indirect lognormal volume-variance
correction.  The use of direct simulation versus Gaussian
simulation calls for no a-priori data transformation. There is,
however, an implicit multiGaussian random function model
due to the averaging (kriging) of random numbers (simulated
values).  Although any number of data scales may be used, it
is anticipated that the primary use of the program will be to
use core and log data to directly estimate the geological
modeling cells, see Fig. 19 for a schematic illustration.  Larger
scale data from seismic or historical production may also be
used in modeling.  All data is assumed to be “hard”, that is,
with no measurement errors.  The only difference between the
different data is the volume scale.

Simple kriging with a stationary known mean is used.
Ordinary kriging or kriging with a trend model could be
implemented; however, the unbiasedness constraint(s) would
have to account for the volume scale of the data.  The simple
kriging estimator for two different data scales is written:
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where z* is the estimator, z is the mean, there are n data at
scale v, ( )iv uz , i=1,…,n, and m data at scale V, ( )'iv uz ,

i=1,…,n.  The set of n+m kriging weights ivλ , i=1,…,n, iVλ ,
i=1,…,m are given by the classical simple kriging equations.
The equations are presented graphically in Fig. 19.  Some
notes on the construction and use of this matrix:

The diagonal elements, )( , ii vvC , i=1,…,n and )( , ii VVC ,

i=1,…,m on the left hand side matrix are covariances between
the data and themselves, that is, the dispersion variance  of the

data volumes within the study area ),(2 AvD and ),(2 AVD .

The dispersion variances for all data scales are calculated by
average variogram γ  values.

The covariances between the data of different volumes, all
non-diagonal elements on the left-hand side, are calculated by
numerical averaging the point covariance structures.  The
covariances between the data and the volume being estimated,
the right-hand side vector, are calculated by numerical
averaging of the point covariance structures.

Solution of the kriging equations leads to the optimal
weights to calculate the estimator (see equation 9) and the
kriging variance:
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DSS proceeds sequentially by drawing from a distribution
with mean and variance specified by the kriging mean and
variance.  The shape of the distribution is not specified.  Any
distributional shape may be used and the input
variogram/covariance structure will be reproduced.  The
histogram of the simulated values, however, will not honor the
input histogram. Each simulated realization may be
transformed with trans  to honor the target histogram.

The present program dssim_ms  considers each
distribution to have a normal or Gaussian shape.  This is
consistent with application to porosity where the histograms
are often symmetric with a near-normal shape.  Any other
distribution could be used.  A lognormal distribution would be
more appropriate for permeability.

The shape of the resulting histogram will not be correct
due to the implicit assumptions of the DSS approach.  The
trans  program from GSLIB may be used to get back to the
correct histogram.

The variogram specification in dssim_ms  corresponds to
the point scale.  The nugget effect is not defined at the point
scale, therefore, there is one additional parameter to specify
which scale the nugget corresponds to.  Note that it is not
possible to simulated true point values (zero volume) in
presence of a nugget effect.

Simulation example
For illustrating the procedure of multiscale direct simulation
we establish a data set including data at three different scales,
core, log and seismic scale. The core and log data originates
from the section already used for the variogram analysis in the
chapter on scaling laws. In addition a synthetic data set with
seismically derived porosity values is included with a
resolution of 4 m. The point scale variogram derived earlier is
used for specifying the correlation structure, and a first
simulation is created at a resolution of 0.02 m, comparable to
the core scale resolution. A comparison of the simulated
values and the data is shown in Fig. 20.

Discussion
The theoretical upscaling applied on one example seems to
match very well the actual data despite some uncertainties
regarding the size of the log-scale averaging volume.  In fact,
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the back-calculation of the averaging volume from the spatial
statistics could prove a useful supplement to analytical
calculations regarding well log tool response.

The upscaling example matches despite a periodic
structure in the data, and this has given rise to an extension of
the traditional scaling rules with a separate rule for periodic
components in the variogram description.

Conclusions and Future Work
The increasing diversity of data available for use in
geostatistical modeling, and the urge to incorporate them all
into the modelling procedures have raised the issue of scaling
of the different data.

The traditional scaling laws have been revived and made
available for numerical analysis.

A simulation algorithm that is able to account for data at
multiple scales has been implemented and the output
compared to data input.

There remain, however, some significant assumptions with
that must be addressed in future work.

A significant assumption is that the petrophysical property
must average linearly.  This is appropriate for facies indicator
variables and porosity; however, acoustic properties and
permeability simply do not average linearly.  A power-law
formalism could be used whereby the original variable is
transformed to a variable that, in general, averages linearly.
The widely used sequential simulation approaches require a
transformation either at the beginning to the convenient
Gaussian distribution or afterwards to correct for the non-
reproduction of the histogram.  Such transforms are not
compatible with the assumptions behind the classical volume-
variance relations of geostatistics.

Another significant assumption in the use of conventional
volume-variance relations is that the spatial variability is
completely characterized by a stationary random function
using 2-point variogram / covariance measures of correlation.
No higher order non-linear spatial connectivity is accounted
for, which may pose a serious problem in real petroleum
reservoirs.

Nomenclature
a  = range parameter for variogram.

C = sill parameter for variogram.

0
vC  = nugget value for variogram.
2D  = variance.

R = large scale region.
TVD  = True vertical depth.
V  = volume for coarse scale .
v  = volume for fine scale.
• = point scale.

( )hiΓ  = function describing the correlation

structure for a model variogram.

γ = variance for variogram calculation.

γ = average variogram for a defined

volume.

),( VVΓ = average variogram using unit

variogram from 0 to 1 for a defined
volume.

Subscripts
hole = hole effect in variogram model.
sph  = spherical stucture for variogram

model.
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Fig. 1 – Illustration of the volume measures (in cubic metres) for
the different scales of data. Note that the scale distance between
core and wireline-log is nearly as large as between log- and
modelling cell volumes.
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Fig. 5 – Variograms for fine-scale and blockaveraged porosity
values. Upper set is model variogram (line) and experimental
variogram (dots) of simulated fine-scale showing a very good
reproduction by the simulation. The lower set is the theoretically
predicted variogram (line) and the experimental variogram for the
block-average porosity values (dots).
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Fig. 6 – Comparison of theoretical and experimental variograms
for a - fine-scale simulation; b - 0.50 m blockaverage; c - 1 m
blockaverage; d - 2 m blockaverage; e - 4 m blockaverage. They
all show very good match between prediction and experimental
variogram.
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Fig. 8 – Model and experimental variograms of the original fine
scale simulation (upper line and open dots) and the experimental
variogram for the upscaled data using a moving window average
(lower filled dots) indicating a more Gaussian type variogram
model. The open dots is the experimental variogram for the block-
averaged data. The lower line is the predicted variogram model
assuming spherical structure in the scaling calculation.
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Fig. 10 – Schematic illustration of tool volume (length) conversion
from measured depth scale to TVD (True Vertical Depth) scale.
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Note that the log data has lesser variance than the core data in
Fig. 10.
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Fig. 14 - Experimental variogram of core porosity data from the
MFB-7 interval.  The experimental variogram has been fitted with a
nested model of spherical and hole effect variogram models.
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Fig. 15 - Individual variogram structure for the spherical
component of the nested variogram structure in Fig. 14.
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Fig. 16 - Individual variogram structure for the hole effect
(periodic) component of the nested variogram structure in Fig. 14.
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investigation length.  The average variogram value of 1.84 is
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Fig. 18 – Comparison of core scale experimental variogram (upper
bullets connected by dashed line), core scale variogram model
(upper solid line), log-scale experimental variogram (lower bullets
connected by line), theoretically derived log-scale variogram
(lower solid line). The lower dashed line is the model calculated
with using a slightly too large tool volume (0.6 m) which seems to
match better the actual experimental variogram from the log scale
data.
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