Pros and Cons of Various
Algorithms Used in Stochastic
Modeling

Clayton V. Deutsch

School of Mining and Petroleum Engineering
Department of Civil & Environmental Engineering
University of Alberta

April, 1999 e Toulouse France



Pros and Cons

 What I am going to do:

— walk through reservoir
modeling



Basis for Comparison

Suitability for the problem at hand:
— heterogeneity modeling accounting for all data

— uncertainty quantification for decision making

Proven technology:
— avold implementation errors / surprises

— time to construct / utility in the future
Simplicity: avoid blunders / reduce time
Flexibility: all data including future monitoring



Work Flow

* Sequential Modeling:
- large scale structure: surfaces / faults
- stratigraphic surfaces
- lithofacies
- porosity / permeability
e Scale up and translation to flow simulation

* Reservoir management decision making



Faults / Large-Scale Topology

Mostly deterministic and outside the main focus
of geostatistics

Stochastic faults with Boolean simulation
— simulate the geometric position of faults
— condition to seismic data

— simulate continuous properties (transmissibility)
Facet/tetrahydra based tolpology
Pros and cons: few methods...



Surface Modeling

* Bounding surfaces provide important controls
on facies and trends in petrophysical properties

* More important than facies modeling 1n many
reServolrs




Stochastic Surfaces for
Deepwater Systems

* Qutcrop studies support “layered” nature of
deepwater systems

* Fining upward trend within sediment packages
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Surface Modeling Based on Hybrid
Boolean / Gaussian Techniques




Surface Modeling Pros and Cons

Volumetric uncertainty (top, OWC...)

For stratigraphic layering at scales that defy
reliable interpretation

Techniques?
— Object-based template shape

— Gaussian deviations from template shape for realism
and data conditioning

Always appropriate for uncertainty quantification
and “layered” systems



Lithofacies Modeling

* More techniques to choose from:
— object-based versus cell-based
— many different cell-based algorithms
» Cases where object-based are clearly better:
— deposition led to “nice” geometric shapes
— low to intermediate net-to-gross systems
» Cases where cell-based are clearly better:

— strong diagenetic effects mask “shapes”

— high net-to-gross systems
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Basis to Compare Object-Based
Techniques

* Geologically realistic parameterization

» Accessible parameters for shape and positioning
 Flexibility to integrate other data types

* Free of artifacts from positioning algorithm

* Fast enough to allow sensitivity studies...

 Integrated petrophysical property modeling
(correct continuity and trends)



Some Examples




Cell Based




Cell-Based Lithotfacies Modeling

Variogram / two-point stats. for spatial control

Reliable inference of multiple point statistics has
limited application in that area

Many different techniques:
— sequential indicator methods

— truncated (plur1)Gaussian methods

— 1terative methods

Let’s look at some pros and cons of the different
methods



Sequential Indicator Stimulation

* Pros:
— straightforward spatial control of lithofacies

— easy Integration of seismic data
— fast / robust

e Cons:

— simplistic linear features that may be considered
non-geological

— little control on lithofacies patterns due to awkward
calculation and use of cross variograms



Truncated Gaussian Methods

* Pros:

— straightforward spatial control of different facies
(particularly “nested” or “ordered” lithofacies)

— easy Integration of seismic data
— fast / robust

e Cons:
— linear features may be considered non-geological

— awkward 1nverse problem for pluriGaussian approach



Iterative Methods for Lithofacies

* Numerical Rocks / Simulated Annealing

* Pros:
— flexible data integration

— arbitrary spatial control with any “order” statistics
e Cons:
— “delicate adjustment of many tuning parameters”™

— numerical artifacts

— CPU requirements



Non-Linear Features
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Porosity Permeability Modeling

 Many techniques to honor a histogram and
variogram, which are adequate once facies...

* (Gaussian techniques (matrix, sequential,
spectral, ...) equally appropriate

 Indicator techniques that provide advantages of
(1) data coding, (2) continuity of extremes

e Need to handle soft data at different scales
(seismic and production data) and hard data at a
much reduced scale



Scaling and Translation to Flow
Simulation

Flow-based scale-up 1s routinely applied
Minimize artifacts due to boundary conditions
Scale-up within “homogeneous” lithofacies units
Align grid with heterogeneity and flow patterns
Local grid refinement near wells

Perform runs to see effect of grid size

Not Mainstream Geostatistics



Reservoir Management Decision
Making

Once again: Not Mainstream Geostatistics

Geostatisticians must provide results that lead to
improved decision making

Rank realizations to limit subsequent CPU effort
Decision making in face of uncertainty
— exploration drilling / well site selection

— development planning: wells, maintenance,...

— IOR decisions, scenario ranking



Well Log and Core
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Well Log and Core

e Surfaces, lithofacies, porosity,
permeability
* Handled by virtually all
algorithms
* QOutstanding 1ssues:
— scaling between core/log/cell
— uncertainty in petrophysics

— permeability values

— object-based modeling



Seismic Data

* Surfaces, stratigraphy,
attributes, 4-D monitoring

; * Handled reasonably well

* QOutstanding 1ssues:
— scale and uncertainty
— information from 4-D

— actual seismic data versus
interpreted attribute

(s) awny

Time and distance scale are arbitrary




Conceptual Geology

Stratigraphic interpretations

Understanding of stacking patterns, areal trends,
relationships of facies,...

Most geostatistical models would be found
lacking by a geological expert

Many outstanding 1ssues related to complex
geometry, continuity, scaling... — quantification
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Forward Modeling

" —— * Architecture of

sediment structures
* “Correct” physics
 Not well handled

* QOutstanding 1ssues:
— scaling of results

— reservoir-specific
results. ..

— geostat. techniques




Production Data

» Historical production data,
DST, RFT, tracer, well test

* Some tools to extract spatial
constraints

* Increased use of streamlines

* QOutstanding Issues:

— 3-D multiphase data with
changing well conditions

— 1ntegration with other data
types



Pros and Cons: Some Truisms

Practice / real life application quickly separates
those methods with more “pros” than “cons”

Theoretical “pros” do not lead to practical ones

Practical acceptance will ultimately lead to
theoretical justification

Good software will add considerable strength to
any algorithm

Simple solutions with accessible input data are
always preferred



Future Research and Development

Object-based models for non-fluvial settings

Techniques to account for forward modeling:
— surface-based modeling

— rule induction technology

— multiple point statistics

Rigorous accounting of volumetric support
Practical production (dynamic) data integration
Integration of all data by “inversion”

Transfer of uncertainty to decision making



Potential for CPU Improvements
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Critical Temperature in
Simulated Annealing
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