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All geostatistical modeling algorithms require histogram input for the proportions of lithofacies or the
distribution of petrophysical properties such as porosity and permeability. Such histogram input has
a first-order control on volumetrics and flow behavior of reservoir models. Most algorithms also
require variogram input, which specifies the spatial continuity of the lithofacies and petrophysical
properties. In presence of sparse well data, the variogram has significant control on the appearance
and flow behavior of reservoir models. Although the histogram and variogram are of unquestioned
importance in reservoir modeling, they are often hastily assembled with little regard for geological
relevance or statistical representivity. This paper presents guidelines and principles to assist
reservoir modelers determine reliable histograms and variograms.

Introduction

Geostatistical techniques slavishly reproduce input lithofacies proportions and the histogram
of petrophysical properties. Variations in the reproduction of the histogram are minor and
attributable to ergodic statistical fluctuations and not to true uncertainty. The naive histogram
from well data must often be corrected. Wells may be preferentially located in high-pay
zones and core plugs may be preferentially taken from net reservoir facies, Classical
declustering techniques, such as cell declustering and polygonal declustering, may be
sufficient when there are many data (tens of wells). Seismic data and/or geological trend
mapping must be used in presence of few wells.

Failure to apply declustering techniques prior to geostatistical modeling can easily introduce
a bias of up to 30% in the average porosity or facies proportions. Proceeding with reservoir
modeling without declustering could lead to large errors in static reserves and dynamic flow
predictions. The histogram is important for both cell-based geostatistical modeling and
object-based modeling.

The variogram is a critical input to cell-based geostatistical studies: (1) it is a tool to
investigate and quantify the spatial variability of the phenomenon under study, and (2) most
geostatistical estimation or simulation algorithms require an analytical variogram model,
which they will reproduce within statistical fluctuations. In the construction of numerical
models, the variogram reflects some of our understanding of the geometry and continuity of
the variable, and has a very important impact on predictions from such numerical models.
Interpretation of and modeling of the variogram consistent with geological principles is
critical for reliable geostatistical models.

Selection of a variogram by default or on the basis of computer visualization with extreme
vertical exaggeration is questionable. Flow predictions are sensitive to the lateral continuity
of critical high- and low-permeability heterogeneities.



No rational geostatistical reservoir modeling workflow is complete without special attention
to critical inputs such as the proportions/histograms and measures of spatial continuity
(Gringarten & Deutsch 1999; Kupfersberger & Deutsch 1999).

Classical Declustering

Many contouring or mapping algorithms automatically correct preferential clustering.
Closely spaced data inform fewer grid nodes; hence, receive lesser weight. Widely spaced
data inform more grid nodes; hence, receive greater weight. Even though modern stochastic
simulation algorithms are built on the mapping algorithm of kriging, they do not correct for
the impact of clustered data on the target histogram. Simulation always gives some weight to
the input global distribution, particularly in areas of sparse well control. Moreover,
transformation to a standard normal distribution does not remove the need for a
representative distribution; back-transformation ensures that the original histogram is used.

Declustering techniques assign each datum a weight, w;, i=1/,...,n based on its closeness to
surrounding data, and two methods have been devised to account for this effect. A datum in
an area that is sampled sparsely will receive more weight than a datum in a densely sampled
area. The weights are then used as frequencies of occurrence to generate the histogram or
frequency distribution. Two commonly used declustering techniques are the polygonal
method ((Isaaks & Srivastava 1989), p.238-239) and the cell-declustering methods (Journel
1983; Deutsch 1989).

The polygonal method first determines polygons of influence for each data location (Isaaks &
Srivastava 1989). The declustering weight is taken as proportional to the area of the polygons
of influence. Clustered data with small polygons of influence receive less weight than
isolated locations with large polygons of influence. The weights then are used as frequencies
of occurrence to generate a weighted histogram. It has been observed that polygonal
declustering technique works well when the limits (boundaries) of the volume of interest are
well defined and the polygons do not change in size by more than a factor of, say, 10 (largest
area/smallest area).
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Figure 1: (A): Histogram of sampled values from an underlying true distribution. The
sampling locations is shown in (B): The geometry of the polygons for declustering. (C): The
histogram of the corrected distribution with polygonal declustering applied.

Another widely used technique is called cell declustering. The Cell declustering algorithm
first divides the volume of interest into a grid of cells. The number of data in each occupied
cell is calculated. There are a number of parameters such as the location (origin and
orientation) of the grid and the cell size that must be determined (Deutsch 1989). The
number of data in a particular area is used to assign the weights. The main requirement of
both these declustering procedures is that enough data must be present to perform the
declustering to arrive at unbiased statistics.



Soft-Data Declustering

The classical declustering methods only work when there are enough data to assign greater
and lesser weights. The conventional polygonal and cell declustering methods are inadequate
to determine a representative distribution unless there is adequate data coverage in both
“good” and “poor” areas of the reservoir. However, if this coverage is biased, there may
often be sufficient seismic or geological data to know a-priori where the high-pay good areas
are; the first wells would be located in the best areas. Then, later in reservoir development, a
geostatistical model may be constructed for further development planning. At that time,
unbiased statistics are needed. The same secondary seismic or geological data used to collect
the biased data (in a good sense) can be used to determine representative statistics for
geostatistical modeling (Frykman & Deutsch 1998). The first requirement is a spatial
distribution of some secondary variable like seismic impedance, a hand contoured net-to-
gross map, or simply structural depth if reservoir quality is linked to depth.

In the example illustrated on Figure 2, the reservoir quality (porosity and permeability) in the
reservoir are better in the highest part of the field and degrade toward the flank areas. Wells
with available data are mostly situated on the crestal part of the reservoir. Since a general
porosity decrease is associated with increasing depth, this imposes an under-representation of
low porosity and permeability values when a model of a larger area is requested. We
therefore need to derive a representative distribution for input to the geostatistical simulation.
The model-based declustering technique, based on calibration with a secondary reservoir
attribute (a depth model which is unbiased in this case), is presented to overcome this first
challenge.

The model established for the porosity-depth relation is guided by the available well data
from the vertical wells in the field, and by additional data from a well in the surrounding area,
and the method relies on the merging of conditional distributions derived from a bivariate
distribution model (Figure 2).

Figure 2. The bivariate model for the relation between porosity and depth is shown as decile
distribution lines. For each depth datum, a conditional distribution of porosity can be
extracted, and given the depth distribution for the model volume, these conditional
distributions can be merged applying the weight given by the depth distribution. This results
in the declustered distribution, significantly different from that given by the initial well data.



The method of model-based declustering has been successfully applied in studies on the Dan
field, using depth and seismic impedance respectively as secondary variables (Frykman &
Deutsch 1996; Vejbak & Kristensen 2000).

Analogue Data for Variogram Interpretation

Most wells are vertical. This makes it straightforward to infer the vertical variogram, but
difficult to infer a reliable horizontal variogram. Given the overwhelming noise content in
sample horizontal variograms, one evident error is to adopt a “random™ variogram model,
which appears to closely fit the experimental variogram. This is convenient but unrealistic.
Our goal is to infer the best parameters for the underlying phenomenon; it is not to obtain a
best fit to unreliable experimental statistics. Secondary information in the form of horizontal
wells, seismic data, conceptual geological models, and analogue data must be considered. In
all cases, however, expert judgment is needed to integrate global information from analogue
data with sparse local data (Gringarten & Deutsch 1999; Kupfersberger & Deutsch 1999).

Indeed, a variogram model is not simply a mathematical convenience required by kriging-
based geostatistical algorithms. The variogram is a measure of spatial correlation and
informs specific aspects of geological deposition, which may have a direct impact on fluid
flow. Variogram “fitting” should only come after a serious variogram “interpretation” stage.
That interpretation must relate specific underlying geological phenomena to characteristic
shapes observed on experimental variogram points. The interpretation methodology consists
of (i) identifying the global variance of the property studied; it is the expected plateau value
(sill) of the variogram model; (ii) partitioning this variance into variance regions which
explain variability at different length scales; these regions are identified by specific signatures
of the experimental variogram (the reader is referred to Gringarten & Deutsch 1999 for a
detailed explanation of variogram interpretation and modelling).

The most important signatures of a variogram are (i) the nugget effect (unique in all
directions and characterized by a discontinuity at the origin); (ii) geometric anisotropy (when
different directional variograms reach a similar variance contribution at different ranges); (iii)
zonal anisotropy (where the variogram only exists in one direction for a given variance
region). Two other signatures are due to trends (when the variogram systematically increases
above the theoretical sill) and geological cyclicity (characterised by undulation on the
variogram, the so-called hole-effect).
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Figure 3: Schematic of variogram interpretation principles where signatures of the
experimental variograms are used to partition the total variability of the phenomena.

Every variance region identified on the vertical variogram must exist on the horizontal
variogram. The nugget effect is first, which is clear on the vertical variogram, then multiple



geometric anisotropy regions, and finally there may be a zonal anisotropy for the large-scale
variability region (see Figure 3). If data are too sparse to calculate eneush-peints—for-thea
reliable experimental variogram.-Fthere are two steps to synthesize a horizontal variogram:

1. Establish or infer the horizontal-to-vertical anisotropy ratio for the geometric anisotropy
structures. Conceptual geology, analogues and possibly secondary data are used for this
purpose (Kupfersberger & Deutsch 1999). Typical horizontal to vertical anisotropy ratios
for correlation ranges are given in this paper. The ratio varies from 10:1 in discontinuous
point-bar environments to 500:1 in continuous platform carbonates.

2. If the vertical variogram flattens off at a value smaller than the theoretical sill, then the
horizontal range for that variance region must be inferred as in step 1. T+his behavior is
typical of areal trends. Another tvpe of zonal anisotropy that is caused by persisient
stratification presents But the challenge H—!(-H)f determm inge what fraction of the vanance
is explained by this zonal anisotropy. ;
correlation-in-the-horizontal-direction:

The resulting synthetic horizontal variogram consists of the structures visible on the vertical
variogram plus possibly a zonal anisotropy (step 2).

Uncertainty Modeling

Multiple geostatistical realizations provide an assessment of uncertainty. Each realization is
a Monte Carlo sample from the space of uncertainty defined by all decisions implicit to the
modeling approach. There is no objective or correct space of uncertainty. The space of
uncertainty created by multiple realizations is realistic when the conceptual geological
framework and statistical parameters, such as the histogram and variogram are well known.
A source of concern is that these parameters are not well known early in the lifecycle of a
reservoir; therefore, there is more uncertainty than measured by a set of geostatistical
realizations generated with the same set of underlying parameters.

A more realistic space of uncertainty is determined by a combination of the scenario-based
approach and conventional geostatistical modeling. Different scenarios are defined that have
alternate histograms and variograms. The probability of each scenario is determined by
recursive application of Bayes Law; multiple realizations are generated for each scenario to
model the uncertainty of incomplete knowledge given the scenario.

A reasonable definition of scenarios and assignment of conditional probabilities is critical.
The scenarios can reflect different aspects of uncertainty, e.g., depositional style (estuarine
channels versus tidal dominated), fault seal (sealing versus partial sealing), level of
fracturing, and facies definition. The scenarios could also reflect uncertainty in critical
statistical parameters such as the net-to-gross ratio (low, medium, and high) or the horizontal
variogram range. There can be many levels to the scenario tree and a different number of
levels down each branch of the tree. There could also be a different number of geostatistical
realizations for each scenario.

The large-scale discrete aspects of uncertainty are quantified with the scenario-based
approach. Uncertainty due to incomplete data is quantified with multiple geostatistical
realizations. Reservoir uncertainty addressed with geostatistical realizations alone is
reasonable late in the reservoir lifecycle where there is little large-scale uncertainty; small-
scale models of heterogeneity are adequate to reflect uncertainty.



Conclusions

A representative target histogram is critical for geostatistical modeling. Establishing a
calibration relationship to soft data is the basis for declustering in presence of sparse data, and
the maximum amount of information must be used to build this model. Both the actual data,
and additional knowledge and experience are needed to construct the model.
Notwithstanding our dependence on this relationship, using a poorly known calibration is
better than ignoring an important sampling bias. This paper also discusses the need for a
reliable variogram model and hints at ways to obtain realistic variogram parameters from
ancillary information in the presence of poor experimental horizontal variogram data. The
use of a systematic interpretation methodology aimed to identify variance regions at different
scales on the vertical variogram and projecting them onto the horizontal variogram is the first
step toward a consistent 3D variogram model. Geological understanding and analogues
yielding vertical to horizontal anisotropy ratios make it a reliable model. Furthermore, due to
the inference nature of input parameters, it is good practice to perform uncertainty modetling
through a scenario-based approach of histogram and variogram parameters - and in general
of key yet uncertain modetling parameters.
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