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Abstract
This paper introduces an algorithm for rule induction

intended to provide new insights, improve the reliability and
expedite the utilization of large petrophysical and geologic
databases. Very large petrophysical, geophysical, and
geological databases contain multiple data types, which must
be interpreted for application in subsurface modeling.  This
paper presents a significant advance in discovering complex
and even nontrivial data relationships from such databases.

Geoscientists are often challenged to predict subsurface
lithologies and properties from multivariate relationships
within large databases of core, wireline, and seismic data.
Many data analysis techniques are used including histograms,
parametric and non-parametric regression, n-dimensional
histograms, cluster analysis, discrimininant analysis, principal
components analysis.  This paper introduces a new algorithm
that seeks to discover “rule-like” relationships within the data
that can be used to make predictions.  The method is loosely
derived from a data mining technology of classification.

Concepts of data attribute distinguishability and
importance are introduced to assess the value of the data and
the outcomes to predictability.  The new theory,
implementation details, and an application are presented.
Current petrophysical, seismic, and geostatistical analysis
benefit from the rule induction algorithm presented.  Improved
reservoir characterization and forecasting result.

Background
The field of data mining2,7,8,11,17,18 has grown in recent years to
deal with large databases available in different industries, in
particular, the financial and medical fields.  Data mining is the

identification or discovery of patterns in data.  There are
several different types of data mining.  These include
classification, clustering (segmentation), association, and
sequence discovery.  The main focus of classification is
supervised induction, that is, inference of rules and
relationships from large databases.  The aim is to extract
knowledge from data, so that results not directly in the training
data set can be predicted.  The training data helps to
distinguish predefined classes.  Neural networks3,9,13,14,27,
decision trees5,6,16,19,26,29 and “if-then-else” rules are
classification techniques.  A disadvantage of neural networks
is that it is difficult to provide a good rationale for the
predictions made, that is, the rules are not always clear.

Data mining is an interdisciplinary field bringing together
techniques from statistics, machine learning, artificial
intelligence, pattern recognition, database, and visualization
technologies.  The methods used in data mining are not
fundamentally different from older quantitative model-
building techniques, but are natural extensions and
generalizations of such methods.  There are many applications
of various data mining techniques to petroleum
characterization1,4,12,15,28.

A rule-based algorithm is intended to provide
understandable rule-like relationships in the data.  A rule is a
prevailing quality or state.  Induction is an instance of
reasoning from a part to a whole.  Rules indicate the degree of
association between variables, map data into predefined
classes, and identify a finite set of categories or clusters to
describe the data.  The rules support specific tasks and are
generated by repeated application of a certain technique, or
more generally an algorithm, on the data.  Rough Sets17,20-

25,30,31 are specialized methods for inducing rules.  The
essential idea of rough sets is to express uncertain knowledge
through an approximation space, which is constructed as
certain sets.

Many other methods, including regression analysis,
assume that there is a functional form between the predictor
and response variables.  These smooth out variations and are
difficult to apply to multivariate nonlinear responses.
Discriminant analysis separates samples into groups based on
relationships in the training data.  The relations must be linear
combinations of variables that are made explicit.  N-
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dimensional histograms are used to delineate a relationship
between a response and multiple predictors, which preserves
the uncertainty in the relation by reading the value of the
response directly from the set of predictors.  Principal
components analysis is a popular technique to discover the
source of variation within the data but again results are
expressed as linear combinations of multiple variables.  All of
these techniques can “fit” the data but might not be good
predictors and do not provide insight into relationships.
Clustering is a method to partition the database into segments
where each segment member shares similar qualities.
Clustering techniques may include optimization algorithms to
determine the maximum similarity among members within
each group and a minimum similarity among members across
the groups.

Obvious applications of rule induction in petroleum
geological data mining include (1) predicting reservoir facies
from multiple wireline logs, (2) predicting reservoir
permeability from wireline logs, (3) predicting reservoir facies
from multiple seismic attributes, and (4) predicting
stratigraphic geometries and spatial architecture from
quantified analog, outcrop, seismic, and numerical
stratigraphic data.

Rule Induction Algorithm
In rough set theory, concepts of coverage and accuracy are

introduced to describe the uncertainty in probabilistic rules.  In
practice, every object in the data table may lead to a rule.  The
challenge is to identify significant rules, that is, accurate rules
with high frequency of occurrence.  Data mining has no a
priori model, that is, no functional relationship between the
data is assumed.

A feature of geological data is that most rules are
probabilistic and not deterministic.  Another aspect of
geological data is that there are relatively few attributes from a
classical data mining perspective.  These two considerations
were used to develop the concepts and terms described below.

Data Table.
Table 1 (all Tables and Figures have been put at the back

of the paper) shows a schematic data table for rule induction.
The table has M observations, N condition attributes.  Without
loss of generality, it is assumed that there is a single decision
attribute.  Multiple decision attributes merely increase the
number of rules and the configuration space.  Initially, the
condition attributes and decision attribute can have different
values or categories, which must be transformed into discrete
codes.  The codes are based on statistical analysis of the data
for each attribute.  For example, the continuous variable of
“gamma-ray count” may be transformed into 3 discrete codes
of high, average, and low.

The number of categorical values that condition attribute i,
cai, can take is ),...,1(, Nini = , no is the number of categorical

value the decision attribute de can take.  The number of
discrete or categorical values the decision attribute and some
condition attributes can take is fixed, or will be determined for

a problem, say n1= 3, but the codes themselves can be
different; both {0,1,2} and {5,9,11} are valid codes for the
three categorical values of attribute 1.

Configuration and Data Coverges.
A configuration is a unique combination of the values of

condition attributes.  The total number of possible

configurations is: ∏= =
N
i iN nN 1 , where ),...,1(, Nini = is the

number of categorical values of condition attribute i.  Note
that some configurations may not appear in the training data

table.  Further, define ( )∏= =
i
k ki nN 1  as the cumulative

number of configuration up to condition attribute Nii ,...,1, = .

Configuration index NNjj ,...,1, = , is uniquely determined

by the values Nili ,...,1, =  taken by each condition attribute,

where ∑ +×−= =
N
i

i

N
i

N

N
lj 1 1)1( , and ii nl ,...,1∈ .  The

condition attribute values Nili ,...,1, =  from a configuration

index j may be retrieved easily.
Every configuration may lead to potential rules in the

system.  Since the decision attribute can take no outcomes,
there are oN nN × potential rules for the system.

The occurrence of configuration j with outcome o is
counted as ojC , , ( NNjj ,...,1, =  and onoo ,...,1, = ) from the

data table.  If ,0, =ojC  then there are no observations in the

data table corresponding to that configuration and outcome
pair.  The number of observations M is:

∑ ∑= = =N oN
j

n
o ojCM 1 1 ,

The configuration coverage jC is defined as the total

number of observations associated with configuration j , i.e.,

N
n
o ojj NjCC o ,...,1,1 , =∑= =

The decision coverage oD is specified as the number of

observations associated with outcome o, i.e.,

o
N
j ojo noCD N ,...,1,1 , =∑= =

The relative (configuration) coverage of configuration j,

jĈ  is a measure used to determine closeness to sufficiency of

observations in obtaining a reliable rule. jĈ is undefined for

,0=jC  equal to zero for ,1=jC and asymptotic to one as the

coverage increases:

N
j

j Nj
C

C ,...,1,
1

1ˆ =−=

The definition of relative (configuration) coverage could
be different.

The relative (decision) coverage of a decision value, ojD ,
ˆ ,

is a measure of the proportion of the occurrence frequency of a
configuration and decision outcome pair out of the number of
observations associated with outcome o, i.e.,
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These relative coverages will be used to adjust the
importance of rules.  For example, more weight will be placed
on decision values with small global proportions to avoid
cases where ojC ,  is small, but is close to oD .  In such a case,

this configuration is very important to that decision.

Conditional Probability and Accuracy.
The conditional probability of each outcome value,

),...,1(, onoo = , for configuration ),...,1(, NNjj = is defined

as:

j

oj
jo

C

C
p

,
| =

Since there are on possible decision attribute categories, a

probability of 1/ on  implies no information.  Any conditional

probability different from 1/ on entails preference in the

decision category, i.e., some knowledge.  Specifically, as jop |

nears 1, configuration j implies decision category o.  A
closeness of jop |  to 0 means configuration j does not lead to

decision category o.  Conditional probabilities close to 1 or 0
contain equally important information for rule induction.  The
former leads to a positive rule relating configuration j to a
specific decision category o and the latter leads to negative
rules relating configuration j to some other decision category.
For a data system, a  NN  by no conditional probability table will
be established.

The knowledge conveys by the conditional probability
leads us to define a measure of accuracy as follows:
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The accuracy 0| =joa  if ojo np /1| =  (no knowledge); the

accuracy 1| =joa when we have jop |  equals to 1 (perfect

positive rule); and, 1| −=joa  when we have jop | equals to 0

(perfect negative rule).  A graph of accuracy versus
probability is shown on Fig. 1.

Significance.
The significance is defined as a combined measure of the

accuracy and coverage, which is used to provide a relative
ranking to the rules.  The significance is the product of the
accuracy and the relative configuration coverage, i.e.,

jojoj aCS |,
ˆ •=

This equation holds for negative accuracy.  For positive
accuracy, the significance is further modified to account for
the relative decision coverage, i.e.,

ojjojoj DaCS ,|,
ˆˆ ••=

As mentioned above, ojD ,
ˆ , is used to account the

proportion of occurrence of an outcome with a specific
configuration to the overall occurrence of that outcome, which
serves like a normalization factor considering the unequally
occurrence of decision attribute categories.  Positive accuracy
results from occurrence exceeding the average occurrence and

the scaling using ojD ,
ˆ will bring up the importance for rules

associated with low occurrence outcome categories.  Negative
accuracy always results from occurrence lower than average
level, the scaling factor is not applied for avoiding to bring the
significance towards zero.  For example, a zero occurrence

ojC , leads to negative one in accuracy (perfect negative rule)

and large negative significance value, applying ojD ,
ˆ  will

revert it to zero significance.

Rule Table.
Rules are the conditional probabilities for those

configuration and decision outcome pairs with large positive
or negative significance.  Positive rules are extracted from the
configuration and decision outcome pairs ranked from positive
1 to zero by positive significance, and negative rules are
extracted from the configuration and decision outcome pairs
ranked from negative one to zero significance.  A practitioner
can decide whether to assign a threshold for significance.
Positive rules provide evidence for the decision outcome and
negative rules provide evidence against the decision.  If a
configuration and decision outcome pair’s significance does
not meet the criteria, the rule table entry is “missing” for lack
of data.

We expect many “missing” entries for rule induction with
real data.  The “missing” entries will be eliminated or reduced
based on compatible rules generated from subsets of data
variables.

Distinguishability.
In a data mining exercise, there is an implicit assumption

that all decision outcomes are distinguishable from the data.
This assumption is not always true and a measure of
distinguishability can assist in determining the decision that is
distinct on the basis of the data table.

Once the rule induction is finished, one can construct a
data table like the one shown in Table 2.  For each observation
in the training data set, a predicted probability is assigned by
looking for the right configuration j and reading the
corresponding conditional probability jop | .

The data table may be divided into on classes with an

indicator function:



 ===

=
otherwise

noMmooif
omind om

0

,...,1;,...,1,~1
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where mo~ is the true outcome category for observation m.
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The summation of );( omind is a counting of all outcomes

related to decision value o.:

∑= =
M
mo omindD 1 );(

The average predicated probability associated with
prediction of o is:

oom
M
m

o
o nopomind

D
p ,...,1,);(

1ˆ ,1 =•∑= =

where omp , is the predicted probability value of

observation m having decision category o.
As op̂ approaches 1, prediction is good. As op̂  goes to

M

D
p o

o = , i.e., the global proportion for decision outcome o,

there is no information provided by the rules.
Therefore, the relative information value for prediction

outcome o is defined as: 
o

oo
o p

pp
I

−
=

ˆ

A composite information value can be defined as the
average over all outcomes:

∑= =o
n
o o

o
I

n
I 1

1

The expected predicated probability and information
measure is used to determine whether outcomes o and o’ are
distinct.

Let’s consider merging two different decision outcomes o
and o’, then we have 1−on  new decision outcomes and the

predicted probability table (like Table 2) will be updated.
Updating the predicted probability is straightforward.  We
derive 1−on  probability values from the previous on  values.

One of them will be jojo pp |'| +  when the actual outcome

turns out to be o or o’.
Following the same procedure, new oI  and the I  values

can be calculated.  If we define ':ooI  as the information value

with o and o’ merged, the change in I  is:
III oooo −=∆ ':':

0': >∆ ooI  means that o and o’ merged leads to an

improved prediction.  Thus, one should consider whether to
treat outcomes o and o’ together, i.e., as indistinguishable,
since the given training data table cannot differentiate them.
One could seek to obtain additional data on a different data
type that would distinguish those outcomes.  0': <∆ ooI means

that merging the outcomes leads to a poorer prediction. Thus,
the outcomes should be treated as distinct.

Lumping or merging could be considered for all possible
pairs of outcome values, and the I∆ can be tabulated, plotted
or ranked from high to low.  The high positive values are
candidates for merging while the low positive and negative

values should be kept separate.  The ':ooI∆  table can be

visualized as a grayscale map.  For example, Fig. 2 shows a
map of the matrix pairing nine decision outcomes from the

facies assignment example.  The bigger the I∆ value, the

higher the distinguishability of outcome pair and the darker
the color.  The diagonal cells are the pairing of outcomes with
themselves and have I∆ values of 0.  As shown in the Fig.,

outcomes 7, 8, 9 are very distinguishable from other
outcomes. The upper left corner area with positive I∆ values

indicate that outcomes 1-2, 2-3, and 2-4 are not as
distinguishable and might be candidates for combination.

Data or Condition Attribute Value.
The same measure of information can be used to consider

the value (importance) of condition attributes or sets of
condition attributes.  All procedures described above are based
on the entire data set with all condition attributes, but the
procedures can be applied to any data subset with partial
condition attributes.

For a N condition attribute data set, there are

),(12 1∑=− =
N
l

l
N

N C  (l is the number of condition attributes in

the subset and Nl ,...,1= ) subsets.  For each subset, a new
data set is derived and the algorithm is applied.  A new set of
configurations of condition attributes is obtained and jop |

values are calculated for every decision category o for a given
configuration j.  For each individual decision category, the
expected predication probability of the occurrence of decision
category o when given the data entry having decision category
o is also calculated as well as the information measure.  The
information value for each subset is, for example,

II N =},...,3,2,1{ , for all attributes, },...,3,2{ NI  for leaving out

condition attribute 1, }2{I  for just attribute 2, etc.  These

results can be plotted as a graph or tabulated in a table that
ranks the value of the condition attributes (subsets).  The
largest values, or maximums of information in the subsets
with the same number of condition attributes, would normally
tend to increase as the number of attributes in the subsets
increases.  However, noisy data or attributes that do not yield
additional information value could reduce I .

Completion of Rule Table.
The rule (conditional probability) tables built from the

entire data set are not complete since there may be no
observations for some condition attribute configurations and
there are some rules have been screened out due to small
significance.  A complete rule table is necessary for practical
usage of rule induction algorithm and “missing” entries in the
rule table should be filled in.  Filling “missing” entries in the
rule table will be accomplished based on significant rule
derived from data subsets.

There are many subsets with various number of condition
attributes, therefore, it is necessary to order the subsets in
filling procedure.  This ordering will be based on their
information value.  The ordered subsets will be considered
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until all “missing” entries are filled in.  The entries filled from
subsets are flagged to indicate the subset useed.

The utilization of the rules is two-fold: (1) gain insight and
make general observations from the rule table, and (2) use the
conditional probability associated with each configuration and
decision outcome pair in the conditional probability table to
model the predictions probabilistically.  These applications
will be illustrated with two examples.

The probabilities are used in modeling. Of course, there is
opportunity to reduce uncertainty by incorporating additional
data sources in the modeling phase.

Implementation
There are issues related to (1) the physical meaning and
subjective understanding of the rules, (2) the usage of results,
(3) the meaning of a probabilistic prediction, and (4) data
integration.  The significance has value between -1 to + 1.  In
principle, the potential rules with largest absolute significance
values will be chosen as important rules, but there exists
ambiguity of how to define big and small, e.g., is 0.9 close
enough?  When there are –1 and/or +1 in the significance list,
those rules will be chosen without question.  The others will
depend on judgment.  Fortunately, we do not care much about
rules in the middle of the list.
The rule induction is only as good as the training data. But in
contrast to other techniques, e.g. neural networks, each rule is
clear and understandable to a practitioner as to its
applicability.  Another issue is the selection of categorical
classes by application of thresholds to a continuous variable.
This could be performed by optimization.
The rule induction procedure consists of the following steps:
(1) prepare the data table and determine optimal classes for the
conditioning attributes (discretization), (2) enumerate all
possible configurations and outcomes, (3) calculate the
conditional probability, configuration coverage, decision
coverage, accuracy, and significance, (4) present a table for
each outcome ono ,...,1=  with the configurations sorted from

low to high significance, (5) apply cutoff criteria on
significance to build a rule table, (6) evaluate information
value for the condition attributes and/or decision outcome, and
(7) fill up the “missing” entries in the rule table based on
subsets of the conditioning attributes.

Example: Synthetic Fluvial Channel System
In fluvial or deepwater depositional setting, the sandy

facies occur as sand channels with associated levee and
crevasse deposits.  For simplicity without loss generality, we
only consider sand-filled channels embedded with a matrix of
shale in this example.  The corresponding effective
permeability depends on the orientation, sinuosity, width,
thickness and geometry of the channels.  The relationship
between these geometric features and the effective
permeability are rules to be extracted for future use.  For this
purpose, channel facies models are created with a variety of
channel parameters such as orientation, thickness, and
sinuosity, which are called condition attributes for the rule

induction system.  Flow simulation is conducted for each
generated model and the effective permeability in X direction
is taken as quality measure (decision categories) of the model.

The synthesized data set consists of the geometrical
features of channel sands and the associated effective
permeability.  An object modeling program, fluvsim in
GSLIB10, was used to generate multiple facies models.  The
simulation domain is a 100 by 100 two-dimensional area.
Three triangular distributions with non-overlapped value
ranges are set for each of the three parameters, i.e., orientation
(O), sinuosity (S), and width (W) (width/thickness ratio).
Totally, there are 27 combinations (sets) of the parameter
distributions.  For each set of parameter distributions,
parameters were randomly drawn and 50 facies models were
generated.  Thus, there are a total of 1350(=50×27) different
facies models created.  For each facies model, permeability
values of 100 and 1 were assigned to channel sand and shale,
respectively and a flow simulation was conducted with no-
flow boundaries, using the GSLIB10 program flowsim.  The
effective permeability in the X direction was taken as a
measure of the quality or productivity of each facies model.

The data generated were organized as a data table with
1350 rows, each representing one facies model, and 4
columns, where the first three denotes the values of three
condition attributes, i.e., the orientation (O), sinuosity (S), and
width (W) (width/thickness ratio) of the channels, and the
fourth column was the value of the decision attribute, i.e., the
effective permeability (K) in X direction.

Fig. 3 shows one of 50 facies models for two of 27
parameter distributions.  Fig. 4 shows the composite histogram
of effective permeability of the 1350 facies models and the
histograms of effective permeability of 50 facies models from
the two parameter distributions shown in Fig. 3, respectively.

The rule induction method requires that the data be binned
into categorical variables.  It is reasonable and straightforward
to classify the three geometrical parameters (condition
attributes) into three categories consistent with the three
distributions.  The three categorical values of orientation (O)
are defined as 2 (good: azimuth angle of 100 ± , which is
aligned with the X direction), 1 (medium: azimuth angle of

1045 ± ) and 0 (bad: azimuth angle of 1090 ± , which is
perpendicular to the X direction).  The three categorical values
for sinuosity (S) are denoted as 2 (high: high deviation 530 ±
and short length of 520 ± units), 1 (medium: medium
deviation 520 ±  and medium length of 535 ±  units), 0 (low:
low deviation 510 ± and long length of 550 ±  units).  The
three categorical values for width (W) are assigned as 2 (large:

525 ± ), 1 (medium: 515 ± ) and 0 (small: 105 − ).  Columns 2
to 4 of Table 3 list the codes of the parameters used in the
generation of facies models.

The continuous variable of effective permeability has to be
discretized into categorical values.  The method of binning the
permeability data could affect the final rule induction results.
For simplicity, three categories were determined for the
effective permeability by just inspecting the permeability
histograms.  Summary statistics of the effective permeability
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for the 50 realizations of each configuration are listed in
columns 5 and 6 of Table 3.

The three categories determined for effective permeability
are: 2 (high: 14≥k ), 1 (medium: 144 << k ), and 0 (low:

4≤k ).  The number of instances and proportions of the
observations on each of the three decision categories for each
configuration are tabulated in the last three columns of Table
3.  By inspecting Table 3, we can expect certain rules like
those listed in Table 4.  Note that the “No Matter W” in Table
4 indicates that the width can have any of the categorical
values.

Results and Discussion
The algorithm was first applied to the 1350 by 4

synthesized channel sand/effective permeability data table and
27 configurations of conditioning attributes were extracted.
Table 5 lists the configurations of condition attributes, the
occurrence frequency ojC , , and the significance ojS , of

decision category o when given configuration j.  By
construction, all 27 possible configurations of condition
attributes in this example have equal, non-zero sample
coverage, i.e., 50=jC .  This will not necessarily be the case

for most data systems in practice.
The full set of rules is sorted by significance for each

decision category, which is listed in Table 6.  The positive
rules shown in Table 7 are taken from the top portion of Table
6, which has the highest positive significance values.  The
negative rules as tabulated in Table 8 are taken from the
bottom portion of Table 6, which have the lowest significance
values.

The rule set is used to estimate the permeability class of
training objects and Table 9 lists the accuracy rate of the
classification.  Even though this accuracy rate derived from
the training set is not a good measure to evaluate the
predictability of the modeling, it still can provide some
indication of the prediction model. The rules are quite reliable
and predictable.

For this synthesized data set, the training data covers all
configurations by construction.  Therefore, the rule set is
complete from the set with all condition attributes and there
are no blanks in the rule sets to be filled.  Fig. 5 shows the
information value of all 7 subsets of this synthesized data set
and the full set with all three condition attributes has the
highest information value.  In the situation of the full set does
not cover all configurations of condition attributes, such
information values will be used to rank the subsets for
retrieving corresponding rules from the subsets.  Fig. 6 shows
the information value change when decision classes are
lumped/merged pair-wise for the full condition attribute set.
The diagonal elements set the basis for comparison that
corresponds to a situation without decision-class lumping.
Off-diagonal elements show the change in the information
values when the attributes are lumped.  Darker color than the
diagonal elements indicate an increase in the value of

information and those lighter colors denote a decrease in the
information value.

Discussion
The proposed algorithm works well for the example shown

here and for other examples that are not shown because of
space considerations.  The most important positive and
negative rules are retrieved successfully.  The proposed
significance definition combines measures of accuracy and
coverage and serves as a quality measure of rules.  Also, the
significance identifies positive and negative rules, similar to
the positive region and negative region in rough sets.

The proposed rule induction technique is suited to
geological data where most attributes are significant.  The
proposed significance measure can be used in combination
with other rule induction techniques and serves as a ranking
measure to identify the most important rules.  In general,
however, the algorithm will need to be extended to include
attribute reduction.

Careful examination of a data table may lead an
experienced person to infer similar, if not the same rules;
however, there are many advantages to automatic rule
induction.  The procedure works for very large datatables with
many attributes, it is repeatable, and avoids personal biases.  It
could also lead to nonintuitive, but meaningful data relations.
The effort in making predictions can be greatly reduced.
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ca1 ca2 ... caN-1 caN de
o1 0 2 ... 1 2 1
o2 2 1 ... 1 2 1
... ... ... ... ... ... ...
oM-1 2 2 ... 0 1 0
oM 1 0 ... 2 2 2

Table 1. A typical data table for rule induction ca, condition attribute; de, decision attribute; o, observation;
N, number of condition attributes; M, number of observations

Observation (m) Predicted probability from the rules
real outcome

)~( mo

1
nppp 12111 ,...,, 1

~o
2

onppp ,22,21,2 ,...,, 2
~o

... ... ...
m

onmmm ppp ,2,1, ,...,, 1
~

−Mo
... ... ...
M-1

onMMM ppp ,12,11,1 ,...,, −−− 1
~

−Mo
M

onMMM ppp ,2,1, ,...,, Mo~

Table 2. Predicted probability from the rules

Noa O S W b mean K Std K Klow Kmed Khighc

1 0 0 0 3.90 1.53 32 (64) 18 (36) 0  (0)
2 0 0 1 2.22 0.48 49 (98) 1  (2) 0  (0)
3 0 0 2 1.91 0.31 50(100) 0  (0) 0  (0)
4 0 1 0 8.50 2.57 4  (8) 46 (92) 0  (0)
5 0 1 1 5.14 2.53 23 (46) 26 (52) 1  (2)
6 0 1 2 4.29 2.87 34  (68) 16 (32) 0  (0)
7 0 2 0 9.40 2.30 1  (2) 49 (98) 0  (0)
8 0 2 1 9.69 4.26 3  (6) 39 (78) 8  (16
9 0 2 2 8.16 4.75 14 (28) 30 (60) 6  (12
10 1 0 0 8.47 2.75 2  (4) 47 (94) 1  (2)
11 1 0 1 6.94 5.05 23 (46) 21 (42) 6  (12
12 1 0 2 4.55 4.01 34 (68) 12 (24) 4  (8)
13 1 1 0 8.21 1.95 0  (0) 50 (100) 0  (0)
14 1 1 1 7.88 3.28 6  (12) 42 (84) 2  (4)
15 1 1 2 5.28 3.49 25 (50) 23 (46) 2  (4)
16 1 2 0 5.02 1.00 5  (10) 45 (90) 0  (0)
17 1 2 1 5.66 1.76 6  (12) 44 (88) 0  (0)
18 1 2 2 5.97 2.52 15 (30) 35 (70) 0  (0)
19 2 0 0 17.46 2.17 0  (0) 2 (4) 48 (96
20 2 0 1 18.74 4.05 0  (0) 9 (18) 41 (82
21 2 0 2 21.19 5.80 0 (0) 6 (12) 44 (88
22 2 1 0 8.66 1.44 0  (0) 50 (100) 0  (0)
23 2 1 1 8.54 2.64 3  (6) 46 (92) 1  (2)
24 2 1 2 9.08 4.17 8  (16) 34 (68) 8  (16
25 2 2 0 3.97 0.77 29  (58) 21 (42) 0  (0)
26 2 2 1 3.66 1.06 35  (70) 15 (30) 0  (0)
27 2 2 2 3.23 0.85 42  (84) 8  (16) 0  (0)

a: index of configuration; b: O, Orientation; S, Sinuosity; W, width; c: KLow, k≤4; KMedium, 4<k<14; KHigh, k≥14;

Table 3.  Parameter used in facies models generation and the statistic of the effective permeability values

Good O (2) and low S (0) and No matter W leads to high K (2)
Bad O (0) and low S (0) and No matter W leads to low K (0)
Good O (2) and High S (2) and No matter W leads to low K (0)
Medium O
( )

mostly leads to medium K
( )Table 4.  Some expected rules for the fluvial system
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No Condition Attribute Occurrence ojC , Significance ojS ,

O S W Klow Kmed Khigh Klow Kmed Khigh
1 0 0 0 32 18 0 0.640 0.000 -1.000
2 0 0 1 49 1 0 0.980 -0.980 -1.000
3 0 0 2 50 0 0 1.000 -1.000 -1.000
4 0 1 0 4 46 0 0.000 0.920 -1.000
5 0 1 1 23 26 1 0.000 0.000 -0.980
6 0 1 2 34 16 0 0.680 0.000 -1.000
7 0 2 0 1 49 0 -0.980 0.980 -1.000
8 0 2 1 3 39 8 0.000 0.780 0.000
9 0 2 2 14 30 6 0.000 0.600 0.000
10 1 0 0 2 47 1 0.000 0.940 -0.980
11 1 0 1 23 21 6 0.000 0.000 0.000
12 1 0 2 34 12 4 0.680 0.000 0.000
13 1 1 0 0 50 0 -1.000 1.000 -1.000
14 1 1 1 6 42 2 0.000 0.840 0.000
15 1 1 2 25 23 2 0.500 0.000 0.000
16 1 2 0 5 45 0 0.000 0.900 -1.000
17 1 2 1 6 44 0 0.000 0.880 -1.000
18 1 2 2 15 35 0 0.000 0.700 -1.000
19 2 0 0 0 2 48 -1.000 0.000 0.960
20 2 0 1 0 9 41 -1.000 0.000 0.820
21 2 0 2 0 6 44 -1.000 0.000 0.880
22 2 1 0 0 50 0 -1.000 1.000 -1.000
23 2 1 1 3 46 1 0.000 0.820 -0.980
24 2 1 2 8 34 8 0.000 0.680 0.000
25 2 2 0 29 21 0 0.580 0.000 -1.000
26 2 2 1 35 15 0 0.700 0.000 -1.000
27 2 2 2 42 8 0 0.840 0.000 -1.000

Table 5.  Potential rules for fluvial channel sand data set

index ca de ojS , index ca de ojS ,

O S W O S W
19 2 0 0 2 0.262 27 2 2 2 1 -0.52
21 2 0 2 2 0.209 11 1 0 1 2 -0.64
20 2 0 1 2 0.174 14 1 1 1 0 -0.64
3 0 0 2 0 0.112 9 0 2 2 2 -0.64
2 0 0 1 0 0.107 17 1 2 1 0 -0.64
27 2 2 2 0 0.072 21 2 0 2 1 -0.64
22 2 1 0 1 0.068 16 1 2 0 0 -0.7
13 1 1 0 1 0.068 4 0 1 0 0 -0.76
7 0 2 0 1 0.064 12 1 0 2 2 -0.76
10 1 0 0 1 0.058 23 2 1 1 0 -0.82
23 2 1 1 1 0.055 8 0 2 1 0 -0.82
4 0 1 0 1 0.055 15 1 1 2 2 -0.88
16 1 2 0 1 0.052 19 2 0 0 1 -0.88
17 1 2 1 1 0.049 10 1 0 0 0 -0.88
26 2 2 1 0 0.043 14 1 1 1 2 -0.88
14 1 1 1 1 0.043 7 0 2 0 0 -0.94
12 1 0 2 0 0.039 5 0 1 1 2 -0.94
6 0 1 2 0 0.039 10 1 0 0 2 -0.94
8 0 2 1 1 0.035 2 0 0 1 1 -0.94
1 0 0 0 0 0.033 23 2 1 1 2 -0.94
18 1 2 2 1 0.026 25 2 2 0 2 -1.0
25 2 2 0 0 0.024 3 0 0 2 2 -1.0
24 2 1 2 1 0.024 26 2 2 1 2 -1.0
9 0 2 2 1 0.016 21 2 0 2 0 -1.0
15 1 1 2 0 0.014 7 0 2 0 2 -1.0
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5 0 1 1 1 0.009 16 1 2 0 2 -1.0
11 1 0 1 0 0.009 13 1 1 0 2 -1.0
5 0 1 1 0 0.009 13 1 1 0 0 -1.0
15 1 1 2 1 0.005 17 1 2 1 2 -1.0
25 2 2 0 1 0.003 19 2 0 0 0 -1.0
11 1 0 1 1 0.003 4 0 1 0 2 -1.0
1 0 0 0 1 0.001 2 0 0 1 2 -1.0
6 0 1 2 1 -0.04 1 0 0 0 2 -1.0
18 1 2 2 0 -0.1 22 2 1 0 2 -1.0
26 2 2 1 1 -0.1 20 2 0 1 0 -1.0
9 0 2 2 0 -0.16 18 1 2 2 2 -1.0
12 1 0 2 1 -0.28 6 0 1 2 2 -1.0
20 2 0 1 1 -0.46 27 2 2 2 2 -1.0
24 2 1 2 2 -0.52 3 0 0 2 1 -1.0
8 0 2 1 2 -0.52 22 2 1 0 0 -1.0
24 2 1 2 0 -0.52

Table 6.  Full set of rules sorted according to significance value

Good O (2) and low S (0) and No matter W leads to high K (2)
Bad O (0) and low S (0) and large W (2) leads to low K (0)
Bad O (0) and low S (0) and large W (1) leads to low K (0)
Good O (2) and high S (2) and large W 2) leads to low K (0)
Good O (2) and medium S (1) and no matter W leads to medium K

( )Medium O  (1) and no matter S and small W (0) leads to medium K
( )Bad O  (0) and high S (2) and small W (0) leads to medium K
( )Table 7.  The derived positive rules

Good O (2) and medium S (1) and small W  (0) never leads low K (0)
Bad O (0) and small S (0) and large W (2) never leads low K (0)
Good O (2) and high S (2) and large W (2) never leads high K (2)
Bad O (0) and medium S (1) and large W (2) never leads high K (2)
Medium O  (1) and high S (2) and large W (2) never leads high K (2)
Good O  (2) and small S (0) and medium W

( )
never leads low K (0)

Table 8.  The derived negative rules

1 2 3 accuracy
1 353 90 0 79.68%
2 135 583 17 79.32%
3 12 27 133 77.33%

Table 9. Results of classification

Fig. 1 - Relationship between accuracy and conditional probability
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Fig. 2 - Information changes for lumped/merged decision categories

Fig. 3 - Geological model of one realization from parameter distribution 1 and 20.

Fig. 4 - Left, Composite histogram of efective permeability of overall 1350 facies model; histograms of effective
permeability of 50 realizations for parameter distribution 1 (middle) and 20 (right)
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Fig. 5 - Information value of all subsets of condition attributes

Fig. 6 - Information changes for lumped/merged decision categories


