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Abstract 
Multiple realizations of facies, porosity, and permeability are 
used for better representation of reservoir heterogeneity for 
more accurate performance forecasting and uncertainty 
assessment.  These geostatistical realizations must reproduce 
all available data to be reliable.  The available well, seismic, 
and production data are at different scales and must be linked 
to the reservoir modeling scale. The most common 
geostatistical simulation algorithms call for a Gaussian or 
normal transformation.  It is not possible to merge the data 
types after this non-linear transformation.  This has led to 
development of "Direct" approaches for simulation and data 
integration. 
 

Considering the variables without transformation ensures 
reproduction of the different data and the prescribed 
covariance or variogram model; however, until now, the 
resulting global histogram of the simulated realizations is not 
reproduced.  The problem is that there is no theory that 
specifies the shape of the conditional distributions.  The mean 
and variance are determined from the well-known normal or 
simple kriging equations; however, theory has not existed to 
specify the shape of the conditional distributions.  A number 
of ad-hoc solutions have been proposed, but they violate the 
data and artificially reduce the modeled space of uncertainty.   

 
This paper develops a theory for determination of the 

required distribution shapes and reproduction of the global 
histogram.  The results have significant theoretical and 
practical consequences.  Data from multiple sources and scales 
can be directly reproduced in reservoir models with no need 
for transformation.  There is no need for ad-hoc post-

processing transformation or correction schemes.  Several 
applications with synthetic data are shown to illustrate the 
technique. 

 
Introduction 
The sequential paradigm to simulation has become 
increasingly popular.  It has advantages over classical 
geostatistical techniques such as matrix methods, spectral 
methods, and moving average methods.  These classical 
methods only work with multivariate Gaussian distributions 
and require a kriging step to make the simulated realizations 
honor local data.  The sequential simulation approach is 
somewhat more flexible for continuous and categorical 
variables and accomplishes the simulation in one step. 
 

Sequential simulation methods have historically been 
applied to transformed variables, that is, a Gaussian transform 
of continuous variables and an indicator transform for 
categorical variables1.  The indicator transform could also be 
used for continuous variables; however, this approach is more 
demanding for inference – we do not concern ourselves with 
indicator methods in this paper.  The application of Monte 
Carlo simulation from a series of conditional distribution is a 
classical statistical procedure that is well-grounded in 
Bayesian statistics.  Sequential simulation can be seen as 
Monte Carlo simulation from a multivariate distribution by 
decomposing that multivariate distribution into a succession of 
conditional distributions by recursive application of Bayes 
Law.  The sequential paradigm is not approximate; however, 
care must be taken to avoid artifacts by poor implementation 
decisions such as using too few previously simulated values. 

 
The Gaussian transformation makes implementation of 

sequential simulation remarkably straightforward.  A decision 
is made to model the full multivariate distribution with a 
multivariate Gaussian distribution after univariate 
transformation to a normal or Gaussian distribution.  Then, the 
conditional distributions at each step of the sequential 
simulation are Gaussian in shape with mean and variance 
given by simple (co)kriging.  The original Z variable is 
transformed to a Y Gaussian variable, simulation is done in Y 
Gaussian space, and the simulated y values are back 
transformed to z values.  The covariance or variogram of the Y 
random variable is correct. 
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Variogram reproduction is guaranteed by use of all data 
and previously simulated grid blocks and by application of 
simple kriging.  In practice, a limited search neighborhood is 
used, but variogram reproduction can be checked and more 
data used if variogram reproduction is deemed unacceptable.  
Secondary data such as seismic data can also be used after 
transformation to a Gaussian distribution and assuming that 
both variables are jointly multivariate Gaussian.  Sequential 
Gaussian simulation (SGS) is arguably the most powerful and 
commonly used geostatistical simulation technique at the 
present time. 

 
The histogram of any particular SGS realization does not 

match the input histogram exactly.  The back transformation 
in SGS would only impose the histogram exactly if the 
Gaussian or normal values were exactly normal with a mean 
of 0, variance of 1, and correct shape.  Simulated realizations 
show statistical or ergodic fluctuations between realizations.  
These variations are an important part of uncertainty; we 
expect variability in the sample statistics over any study area 
of finite size.  It is wrong to transform the results of SGS to 
impose the histogram exactly. 

 
Working in Gaussian space makes calculations 

straightforward; however, it was shown early in the 
development of sequential techniques that the variogram 
structure could be reproduced without transformation to 
Gaussian space2,3.  Direct sequential simulation (DSS), applied 
directly with the original Z data values, would lead to 
simulated values that follow the correct variogram.  The 
Monte Carlo simulation at each step must consider probability 
distributions with the mean and variance given by simple 
(co)kriging, but the shape of the conditional distribution does 
not affect the global mean and variogram.  Until now, there 
has been no good way to decide what shape of distribution to 
use in DSS.  In general, regardless of the shape chosen for the 
conditional distributions, the global histogram of the final 
values taken altogether is not reproduced.  The histogram is 
important; it is a first order statistic that has a first order effect 
on calculations made with the simulated realizations.  The 
inability of DSS to honor the input histogram has been a 
significant problem. 

 
Notwithstanding this significant problem with DSS, 

interest in a direct method has grown.  The main reason is that 
we must use a direct method to simultaneously account for 
data of different volumetric scales.  Transforming data of 
different scales to Gaussian space is problematic: the 
transform to a Gaussian distribution is non-linear and yet most 
averaging is linear (porosity) or very particular (permeability).  
A direct method would avoid the need for this problematic 
transformation.  There are other reasons such as the 
integration of secondary variables at the correct scale and with 
the correct level of precision.  The problem of global 
histogram reproduction must be addressed for successful 
application of DSS. 

The same quantile-transformation procedure used to 
transform original Z values to Gaussian Y values can be used 
to transform the output (simulated values from direct 
simulation) to the correct input histogram4.  The problem with 
this back transformation is that the final global histogram has 
no uncertainty (ergodic fluctuations) and, more importantly, 
large-scale data is not reproduced.  The transformation can be 
modified so that local hard data are reproduced (the values 
before and after transformation can be averaged together with 
a special weighting function); however, the problems of block 
data statistical fluctuations are important. 

 
Caers5 proposed to reproduce the global histogram by 

formulating an objective function as a measure of difference 
between the input global histogram and the histogram of the 
simulated values.  This objective function can be used to 
selectively accept or reject certain simulated values to ensure 
that the final realization reproduces the global histogram.  This 
approach also removes most ergodic fluctuations and could 
introduce artifacts.  Soares6 proposed a different approach to 
reproduce the histogram in DSS.  The central idea of his 
proposal was also to draw values selectively based on the 
kriged mean and variance.  The procedure does not seem to 
work well except when the variogram is nearly pure nugget 
effect. 

 
We propose another method for histogram reproduction.  

The challenge has always been to determine the shape of the 
conditional distribution.  The true beauty of the Gaussian 
approach is that the shape is always Gaussian or normal. The 
key ideas behind our method is to (1) work in original Z space, 
that is, a true DSS application, and (2) work out the shape of 
the conditional distributions as a function of their mean and 
variance using the normal-score or Gaussian transformation.  
We can have the best of both worlds, that is, no data 
transformation and guaranteed reproduction of the input 
histogram within statistical fluctuations. 

 
In petroleum reservoir characterization, any geostatistical 

simulation algorithm is only as good as its ability to integrate 
constraints from seismic and production data.  We can use the 
block kriging approach7,8 to extend the DSS algorithm to 
account for additional “soft” constraints from seismic and 
production data.  Incorporating seismic and production data 
into a fine-scale geologic model presents two major problems.  
First, as previously mentioned, these additional data measure 
earth properties at different volumetric scales; appropriate care 
must be taken to account for the spatial correlation between 
data of different scales.  Additionally, the information brought 
forth by the various data types may be in conflict with each 
other, e.g. the locations of low and high values may disagree, 
the histograms of porosity and permeability implied by the 
soft data may be inconsistent with those of the well data.  In 
this paper, we propose to use block kriging to address the 
volume support issue and direct simulation to reconcile the 
differences in global histograms of various data types.  
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Direct Sequential Simulation and Methodology for 
Histogram Reproduction 
 
Sequential simulation is described in many sources including 
Deutsch and Journel1 and Goovaerts9; the details will not be 
repeated here.  An important result of the theory of sequential 
simulation states that the prescribed covariance model is 
reproduced as long as each simulated value is drawn from a 
local conditional probability distribution whose mean and 
variance are the simple kriging mean and variance3.  These 
probability distributions need not be Gaussian and their shapes 
can vary from one location to the next along the simulation 
random path.  We propose to use a family of distribution 
shapes that we infer from the multivariate Gaussian transform 
procedure. 
 
Consider an original Z variable with a stationary histogram 
F zZ ( ) .  In the Gaussian approach, this variable is transformed 
to a Y variable with stationary standard normal distribution 
G y( ).  The quantile or normal-score transformation is widely 
used to transform any z-value to a corresponding y-value: 
 
y G F zZ= -1( ( ))                                                                   (1) 
 
This transformation can be reversed to get back to the original 
variable: 
 
z F G yZ= -1( ( ))                                                                     (2) 
 
The cumulative distribution functions, F z( )  and G y( ), are 
known and their inverse (quantile) functions, F pZ

-1( )  and 
G p-1( ) , are also known.  Thus, we have a direct link 
between Z and Y space.  This transformation is unique, 
reversible, and non-linear.  
 
A fantastic property of the multivariate Gaussian model is that 
the shape of every conditional distribution is known to be 
univariate Gaussian with the mean and variance given by 
simple kriging.  The distribution of uncertainty in Z space can 
be determined from the non-standard univariate Gaussian 
distribution by Monte-Carlo simulation (drawing L random 
values) or straightforward back-transform of L regularly 
spaced quantiles: 
 
z F G G p y l Ll

Z y
l= ¥ + =- -1 1 1s ( ) , ,*d ie j,    …            (3) 

where y* and s y
2  are the mean and variance of the non-

standard Gaussian distribution of uncertainty, and the pl  
values are uniformly spaced between 0 and 1.  The distribution 
of uncertainty in Z space is assembled from the zl  values.  
This distribution, denoted F zZ y y, ,* ( )

s
, is completely defined 

by Equation 3.  Note that we use the Gaussian parameters as 
subscripts to denote a conditional distribution relating to a 

particular conditional distribution in Gaussian space.  The 
shape, mean, and variance of this distribution depend on the 
original Z distribution, but are not the same as the original Z 
distribution.  In this way, the shape of every z-conditional 
distribution is explicitly known.  We propose to use those 
known shapes in DSS. 
 
The DSS kriging system is 

l j
j

n

j i iC u u C u u i n
=
Â = =

1

1( , ) ( , ), , ,   …                          (4) 

where 
• n  is the number of nearest data retained for kriging, 
• ui ’s are the locations of the nearest data, 
• u  is the location of the current grid cell whose value is to 

be simulated, 
• l i ’s are the kriging weights, the unknowns to be solved 

for, associated with data values at locations ui ’s, and 
• C u ui j( , )  is the covariance between two data locations 

ui  and uj . 
 

The mean and variance of the local distribution are given by 

m m z u mDSS Z j
j

n

j Z= + -
=

Âl
1

[ ( ) ]                                (5) 

and  s lDSS j
j

n

jC C u u2

1

0= -
=
Â( ) ( , )                             (6) 

where mZ and C( )0  are the global mean and variance of the 
data, respectively. 
 
The kriging equations are often expressed in terms of the 
correlogram r( , )u ui j : 
 

l r rj
j

n

j i iu u u u i n
=

Â = =
1

1( , ) ( , ), , ,   …                    (7) 

with m m z u mDSS Z j
j

n

j Z= + -
=

Âl
1

[ ( ) ]                              (8) 

and s l rDSS j j
j

n

C u u2

1

0 1= -
RST

UVW=
Â( ) ( , ) .                            (9) 

 
We will express the kriging systems in terms of the 
correlogram; however, the resulting kriging variance is 
systematically scaled by the global variance so that the correct 
variability is retained.  This is equivalent to using the 
covariance throughout the kriging equations. 
 
The conventional sequential simulation algorithm can be 
modified slightly to implement DSS: 
1. Determine the appropriate mean and variance, mDSS  and 

s DSS
2 , in Z units by kriging, see Equations 7-9, using all 
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relevant original data and previously simulated grid 
nodes. 

2. Find the corresponding Gaussian mean and variance, y* 
and s y

2 , that would yield a z-conditional distribution with 

the z mean and variance (mDSS  and s DSS
2 ) from step 1. 

3. Draw a simulated z value from this conditional 
distribution, that is, z F pZ y y

= -
, ,* ( )

s
1  where p  is a 

random number uniformly distributed between 0 and 1. 
 
Step 2 in this procedure could potentially require significant 
computing effort.  However, for practical implementation, we 
build a database of local distributions with various 
combinations of y mean and variance.  The corresponding z 
mean and variance are then calculated for each distribution in 
the database.  Determining the correct local distribution shape 
amounts to a fast table look-up based on the z kriging mean 
and variance. 
 
Integration of Large-Scale Constraints using Block 
Kriging 
 
Direct Sequential Simulation can be extended to handle 
additional constraints from different data sources.  An 
example would be to use seismic data to constrain a porosity 
model.  Suppose that, in addition to porosity from well data, 
we also have seismic-derived porosity generated from an 
attribute-analysis study.  The seismic-derived porosity is 
vertically coarser than the well data because of the inherent 
limited vertical resolution of seismic acquisition.  Moreover, a 
seismic datum informs a much larger volume of reservoir rock 
than a well log measurement.  Therefore, each well log datum 
is assumed to be of “quasi-point” support whereas each 
seismic datum can be considered to be of “block” support.  
Denote 

• r( , )V uj  as the block-to-point correlogram between 
the coarse block V and the data point uj ; it is 
calculated by numerical integration of the point-to-
point correlogram between uj  and all points v VŒ , 

i.e., r r( , ) ( , )V u
V

v u dvj j
v V

=
Œ
z1

, 

• r( , )V V  as the block-to-block correlogram between 
block V with itself, namely 

r r( , ) ( , )
,

V V
V

v v dvdv
v V v V

= ¢ ¢
Œ ¢Œ
zz1

2 ; again, r( , )V V  

is calculated by numerical integration, and 
• lV  as the kriging weight assigned to the large-scale 

block-support value zV , 
 
then the DSS kriging system is modified to account for such 
soft coarse-scale datum as: 

 

l r l r r

l r l r r

V i j
j

n

j i i

V j
j

n

j

V u u u u u

i n

V V V u u V

( , ) ( , ) ( , ),

, ,

( , ) ( , ) ( , )

+ =

=

+ =

=

=

Â

Â

1

1

1

  

                                            …              (10) 

 
with the kriging mean and variance given by 
 

m m z m z u mDSS Z V V Z j
j

n

j Z= + - + -
=

Âl l( ) [ ( ) ]
1

        (11) 

and  s l r l rDSS V j j
j

n

C V u u u2

1

0 1= - -
RST

UVW=
Â( ) ( , ) ( , ) .  (12) 

 
The above could be generalized to handle multiple coarse-
scale constraints.  One example of such an application may be 
to construct a porosity model subject to vertically coarse 
seismic data and a history matched scaled-up model.  In this 
case, we have well data of “quasi-point” support, seismic data 
of block support V1 and production-derived data of block 
support V2 .  The DSS system can be modified as follows: 

l r l r l r r

l r l r l r r

l r l r l r r

V i V i j
j

n

j i i

V V j
j

n

j

V V j
j

n

j

V u V u u u u u

i n

V V V V V u u V

V V V V V u u V

1 2

1 2

1 2

1 2
1

1 1 1 2
1

1 1

2 1 2 2 2
1

2

1

( , ) ( , ) ( , ) ( , ),

, ,

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

+ + =

=

+ + =

+ + =

=

=

=

Â

Â

Â

  

                                                                  …

                                                                                              (13) 
 
Solving for the kriging weights allows for the calculation of 
the mean and variance of the local histogram: 
 
m m z m z m

z u m

DSS Z V V Z V V Z

j
j

n

j Z

= + - + -

+ -
=

Â

l l

l

1 1 2 2

1

( ) ( )

[ ( ) ]           
                (14) 

 
and 

s l r l r l rDSS V V j j
j

n

C V u V u u u2
1 2

1

0 1
1 2

= - - -
RST

UVW=
Â( ) ( , ) ( , ) ( , )

                                                                                              (15) 
where 
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10 km
10 km

50 ft

m = -1 m = 0 m = +1

s = 01.

s = 05.

s = 1

• r( , )V V1 2  is the block-to-block correlogram between 
blocks V1 and V2 , i.e., 

r r( , ) ( , )
,

V V
VV

v v dv dv
v V v V

1 2
1 2

1 2 1 2
1

1 1 2 2

=
Œ Œ
zz , 

• lV1
and lV2

are the weights given to block-support data 
ZV1

and ZV2
. 

 
We will show an application of each of the above simulation 
algorithms next. 
 
Application of DSS on a Synthetic Data Set 
 
A synthetic data set was generated to illustrate the proposed 
algorithms.  Although the data is synthetic, the statistics are 
representative of an actual reservoir and the modeling 
procedure is typical of a reservoir modeling study.  We have a 
total of 5 wells with porosity and permeability logs sampled at 
half-foot intervals. The prescribed variogram model for 
porosity is areally isotropic with range of 2 km and has a 
vertical range of 15 ft.  The prescribed permeability variogram 
has the same vertical range as the porosity variogram but is 
slightly areally anisotropic with a long range of 2.5 km in the 
SW-NE direction and a short range of 1.5 km in the SE-NW 
direction.   The reservoir covers a 10-km by 10-km by 50-ft 
volume which is discretized by a 100x100x100 geocellular 
model, see Figure 1.  We would like to populate this model 
with porosity and permeability subject to well, variogram, 
seismic and production data constraints.  

 

 

 

 
 
 

First, we perform DSS to generate four realizations of 
porosity to illustrate DSS histogram reproduction.  Figure 2 
shows a small subset of the “look-up” table of local 
distributions.  The entry corresponding to Gaussian mean of 0 
and Gaussian variance of 1 is the marginal well porosity 

Figure 2: Local distributions inferred from 
histogram of well porosity.  From left to right: mean 
in normal space of -1, 0, and +1.  From top to 
bottom: standard deviation in normal space of 0.1, 
0.5, and 1.  Note that the distribution corresponding 
to normal mean of 0 and standard deviation of 1 
(middle histogram of the bottom row) is the 
marginal histogram. 

well data

realization 1 realization 2

realization 3 realization 4

 
Figure 3: Histogram reproduction for four DSS 
realizations. 

Figure 1: Location of five wells and dimension of 
the reservoir. 
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histogram.  Figure 3 shows the histograms of the well porosity 
and of the four porosity realizations.  The input marginal 
histogram is reproduced within ergodic fluctuations. 

 
A seismic attribute study can often provide a porosity map 

that informs the interval average porosity of the reservoir, see 
Figure 4b. Given the sparse well control and the high areal 
resolution of the seismic data, this porosity map is very 
important to further constrain the 3D porosity model.  The 
seismic map could be thought of as a downscaling constraint 
where the scale ratio is 100 to 1 in the vertical direction.  The 
average of the porosity values of the cells in any one vertical 
column of grid cells is constrained by the value of the seismic 
map over that column.  There is no downscaling areally since 
the seismic map has the same resolution as the simulation grid.  
Applying DSS with the seismic map as the large-scale 
constraint, see Equations 10-12, we get a porosity realization 
as shown in Figure 4c.    

In addition to tying the wells and honoring the prescribed 
vertical variogram model, this porosity realization reproduces 

the seismic-derived porosity map, that is, the vertical average 
of the simulated values correlates to the seismic-derived input 
porosity map, see Figure 4b and 4e. 

 
The seismic-derived porosity map may not be consistent 

with the well data.  The wells may be preferentially located in 
better parts of the reservoir or the seismic gives us new 
information in a portion of the reservoir not sampled by a 
well.  For example, consider the case where the seismic 
attribute analysis gives a much lower estimate of porosity in 
the southeast corner of the reservoir as shown in Figure 5b.  
The porosity model can be updated by rerunning the algorithm 
with the new porosity map.  Figure 5c shows the porosity 
realization constrained to the new map and Figure 5d shows 
the new histogram reproduction.  Unlike the previous 
example, the well porosity histogram is no longer consistent 
with the porosity histogram implicit to the revised seismic 
porosity map.  DSS reconciles this difference and the 
histogram of the simulated porosity is a compromise of the 
two input histograms. 

 

b

e

a

d

c

 
Figure 4: a) histogram of well data, b) seismic-derived 
porosity map to be used as “soft” constraint, c) a 
realization of porosity, d) histogram of the porosity 
realization, and e) average porosity map of the 
realization obtained by taking the vertical average of 
simulated values along columns of grid cells. 

b

c

a

d
e

 
Figure 5: a) histogram of well data, b) revised seismic 
porosity map with lower average porosity in southeast 
corner, c) a realization of porosity, d) histogram of the 
porosity realization, and e) average porosity map of the 
realization obtained by vertical averaging of simulated 
porosity values.  Note the differences between 5a and 5d. 



SPE 71323 DIRECT GEOSTATISTICAL SIMULATION WITH MULTISCALE WELL, SEISMIC, AND PRODUCTION DATA 7 

Permeability realizations are often generated from porosity 
realizations using either collocated cokriging, cloud transform 
(a p-field approach), or simulated annealing simulation.  These 
techniques allow for the reproduction of the porosity-

permeability relationship observed on core data.  The reservoir 
model is then scaled up and taken to the history-matching 
phase.  Typically, the reservoir engineers have to assign 
permeability multipliers to the scaled-up model in order to get 
the simulated flow responses to match the observed 
production data.  These permeability multipliers can vary from 
one reservoir region to another and can differ drastically in 
terms of magnitude.  Very often, the modeling process stops 
with a satisfactory history match and the fine-scale geologic 
porosity-permeability model is rarely updated to reflect the 
changes made to the scaled-up model by the reservoir 
engineers.   We could perform this fine-scale “model 
updating” by applying DSS with downscaling. 

 
In this synthetic case study, the final history-matched 

coarse-scale permeability model is shown on Figure 6a.  It has 
20x20x20 blocks so the scale ratio between the (fine) geologic 
and the (coarse) flow simulation models is 5x5x5 to 1x1x1.   
 
The objective is to constrain the fine-scale permeability model 
such that the average of the simulated permeability values of 
the fine grid cells that comprise a given coarse grid block 
identifies the permeability of that coarse grid block.  We can 
sidestep the complex issue of non-linear permeability 
averaging by applying geostatistical downscaling on a power 
average of permeability10.  In this case, we are linearly 
downscaling the logarithm of permeability, which amounts to 
geometric averaging of permeability (or power averaging with 
exponent of zero).  Figure 6b shows a realization of log-

permeability together with the input coarse permeability 
constraint and the resulting upscaled realization.  It can be 
seen that the fine-scale model reproduces the large-scale 
features of the input coarse grid and the fine-scale features 
implied by the variogram model. 

 
Since porosity and permeability are correlated, we would 

like to update the fine-scale porosity model to reflect changes 
made to the fine-scale permeability model.  At the same time, 
we want to preserve the correlation with the seismic-derived 
average porosity map described earlier.  We propose to use 
DSS with two downscaling constraints, see Equations 13-15, 
to accomplish this goal.  Figure 7c shows such a porosity 
realization that honors both scaling constraints reasonably 
well.  It is, of course, possible for the constraints to be 
conflicting in which case the simulation algorithm will attempt 
to compromise.  Figure 7h shows that the updated model of  
 

a b

c

d

f g h

e

 
Figure 7: a) large-scale constraint from 20x20x20 
history-matched model, b) seismic-derived average 
porosity map, c) a fine-scale 100x100x100 realization of 
porosity, d) scaled-up porosity model, e) average 
porosity map of the realization, f) cross-plot between 
constraint shown in (a) and result shown in (d),  g) 
cross-plot between constraint shown in (b) and result 
shown in (e), and h) cross-plot between porosity (c) and 
permeability (Fig 6b) realization. 

a

d

b

c

 
Figure 6: a) large-scale constraint from 20x20x20 
history-matched permeability model, b) a fine-scale 
100x100x100 realization of permeability, c) scaled-up 
permeability of the realization, and d) cross-plot of 
constraint shown in (a) vs. scaled-up result shown in 
(c). 
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porosity and permeability maintains a 0.6 correlation 
coefficient. 
 
Conclusions 
We have shown an approach to simultaneously use DSS and 
reproduce the global histogram without ad-hoc post-
processing or selective sampling.  The procedure amounts to 
pre-calculate the shapes of the conditional distributions that 
will be needed.  These shapes are calculated by back 
transforming the theoretically correct shapes from Gaussian 
space using theoretically correct back transformation 
procedure. 
 
DSS, as is SGS, can be easily extended to account for 
additional constraints using techniques such as collocated 
cokriging or block kriging.  The advantage of using DSS is 
that it does not call for the non-linear Gaussian transform; 
thus, DSS allows for more direct integration of linear 
constraints such as those from seismic or production data 
whereas SGS only allows reproduction of the trend or ranks of 
these soft data.  A potentially important application of DSS is 
that of populating unstructured grids with petrophysical 
properties accounting for the various scales of hard and soft 
data and the differences in grid block volumes. 
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