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ABSTRACT

Grade control in open pit mining requires the specifica-
tion of dig limits that account for mineral grades, economic
costs, and selectivity of mining equipment. Visual identifi-
cation of ore rock types is ideal, but this is not always pos-
sible in lower grade disseminated deposits where ore/waste
contacts are not visually discernible. In this case, conven-
tional grade control practice consists of a two-step proce-
dure (1) create a map of mineral grades at some selective
mining unit scale, and (2) determine practical ore-waste
boundaries or dig limits on the basis of the gridded block
grades or assay information. This procedure is laborious,
depends on a subjective assessment of where the boundary
should be, and may be economically sub-optimal,

We pose the determination of dig limits as an optimiza-
tion problem and solve that problem with the technique of
simulated annealing. Simulated annealing has the unique
advantage of being able to combine multiple non-linear
constraints into a single objective function. We use maxi-
mum profitability and the ability of the equipment to mine
the proposed dig limits as constraints in the determination
of optimal dig limits.

We require a map of expected profit for eah block. Geo-
statistical techniques are recommended, for mapping ex-
pected profit but not necessary. Geostatistics will provide a
quantification of the uncertainty in the grades within rock
types using all available blasthole samples and exploration
drilling. Some variant of L-optimal estimation or kriging
can be used to determine the block-by-block classification
that is economically optimum. We also need the expected
profit for each block. It is unrealistic to assume free selec-
tion, that is, each block cannot be extracted independently
of its neighbors. The optimal balance of “accepting di-
lution” and “wasting ore” is achieved to maximize profit
subject to equipment constraints.

Mining equipment cannot mine isolated ore or waste
blocks. The concept of an equipment curve is proposed
as a means to quantify the selectivity and physical limita-
tions of different mining equipment. Economic profitabil-
ity and mining “digability” are simultaneously considered
by the simulated annealing optimization algorithm. These
two considerations are balanced by dynamic weighting of
these two component objective functions; this weighting
requires a subjective calibration.

We illustrate determination of optimal dig limits with
simulated annealing. The optimal dig limits are presented
and these results compared over a variety of different equip-
ment curves and mining scenarios. Limitations, future work
and other areas of application are identified.

INTRODUCTION

Surface mining requires quantification of ore and waste
zones. These zones must be realistic for the mining equip-
ment. The limits should also minimize the amount of waste
sent to the mill and the amount of ore sent to the waste
dump. Grade control starts with geological mapping and
blast hole sampling. A traditional method is to hand con-
tour the dig limits using the rock types and cutoff grade.

There are some shortcomings to hand contouring: (1)
the uncertainty and variability of the grades is difficult to
account for in a quantitative manner, that is, no provision is
made for assessing the impact of uncertainty and errors of
classification, (2) grade information from previously mined
benches and exploration drilling is not easy to consider,
(3) mining equipment limitations are not systematically ac-
counted for, that is, the limits may be unrealistically com-
plex of overly simplistic, and (4) hand contoured dig limits
are subjective, that is, there is neither an objective mea-
sure of optimallity nor a reproducable procedure. The first
progression beyond hand-countouring is to consider geo-
statistical tools to quantify the variability and uncertainty
in the grades.

Kriging is a key algorithm in geostatistics; it is an esti-
mation technique that minimizes estimation variance given
a prior variogram or covariance model. Kriging estimates
should not be plotted on a map, however, since the values
were not calculated to have the correct “joint” variability.
A map of kriging estimates will be too smooth and will not
carry a measure of joint uncertainty in the grade estimates.

Simulation is an algorithm that extends kriging to pro-
vide a set of realizations have the correct joint variabil-
ity and, taken altogether, characterize spatial uncertianty.
Early practitioners did not know how to directly use sim-
ulated realizations for decision making; it was easier (o
make decisions with just one answer rather than a set of
realizations. Decision analysis tools were then customized
to geostatistical applications ( Srivastava, 1987; Glacken,
1996). These tools permit optimal ore/waste classification
on a block-by-block basis.

A number of geostatisticians have developed variants
of optimal classification schemes considering geostatisti-
cal models and decision analysis (Glacken, 1996; Deutsch,
Norrena, and Magri, 1998; Dimitrakopolous; Isaaks; Sri-
vastava; and Verly). These workers systematically consider
free selection at a fixed block size. The choice of a block
size, however, is inadequate to capture the fact that mining
equipment (1) can dig to limits that do not correspond to ar-
bitrary block boundaries, and (2) cannot freely select a lone
ore block in waste or waste block in ore. The assumption
of block-by-block free selection is the most consequential
limitation of existing grade control procedures.

Figure 1 shows three maps derived from a simulated
deposit. These black and white maps show the classifica-
tion of each block individually. The ore and waste regions
must be “smoothed” into practical dig limits before staking
them in the pit or transmitting them to the GPS-equipped
loading equipment.

The key idea of this paper is to take the next step for-
ward from geostatistical modeling of grades and block-by-
block decision making. We want to determine polygonal
dig limits that simultaneously account for optimal decision
making and the mining equipment. This problem is posed
as an optimization problem. We solve that optimization
problem and show some examples. The optimization tech-
nique for dig limit determination could be applied to the
results of kriging, simulation, or any other mapping tech-
nique. Limitations and areas of future work are identified.
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Figure 1: Ore / waste classification based on the true grade,
the kriged grade, and maximum profit selection (MPS) us-
ing geostatistical simulation and economics.

The Danger of Image Analysis: Some ideas from im-
age analysis could be used for dig limit determination. Dig
limits could be considered as binary ore and waste ( ore
could be further subdivided into low-grade, mid-, and high-
grade), which is particularly well suited to image analysis
methods, Successive application of erosion and dilation is
one approach to “smooth” a binary image. This is not suit-
able for dig limit determination because the value of the ore
is not accounted for. Figure 2 shows two cases (1) Case A
where the top ore block is marginal and should be left be-
cause dilution makes it uneconomic, and (2) Case B where
the top ore block is high grade ore and the dilution is ac-
ceptable the value of the ore outweighs the total dilution.
These two cases are indistinguishable from a binary image
cleaning perspective. Moreover, image cleaning typically
works with pixels and not polygons.

METHODOLOGY

Our problem is to determine practical mining limits that
minimize the amount of waste sent to the mill and ore sent
to the waste dump, that is, maximize profit. Dig limits
are represented by two dimensional polygons. The bench
height is assumed constant for the purpose of grade control;
the problem of split-benching could be handled as a sepa-
rate problem. The polygons may enclose areas of waste
or ore. In practice, there are both ore and waste polygons
on any particular bench. High grade areas will consist of

Case A
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Figure 2: Case A - the top ore block is marginal and should
be left because dilution makes it uneconomic; Case B - the
top ore block is high grade ore and dilution is acceptable
because the total of the dilution and ore is still economic.

waste polygons within a “matrix” or ore; low grade areas
will consist of ore polygons within a “matrix™ of waste.

The number of polygons and an initial guess at the
polygon geometry can be made manually or automatically;
an automatic procedure is used below. The optimization
problem is to modify the polygon to maximize an objec-
tive function that consists of two parts: (1) profit, and (2)
digability. Each ore and waste polygon may be modified
by changing the number of vertex points and by changing
the vertex coordinates. Profit is defined from prior geosta-
tistical modeling of the grades.

Digability may not be a word in the English language,
but most geologists and mining engineers will understand
our meaning, Digability is a measure of the difficulty with
which an ore or waste dig limit may be extracted. A large
polygon with no sharp boundaries would have high diga-
bility. A small tortuous polygon would have low digabil-
ity. Clearly, digability depends on both geometry and the
mining equipment. The same polygon would have differ-
ent measures of digability for a large cable shovel and a
small hydraulic loader. We show one mehthod to quantify
digability.

Details of this optimization problem will be developed
below; however, we note that this problem is not a classical
optimization problem. There is no evident way to calculate
gradients, that is, derivatives of the objective function with
respect to the variables (number of vertices and vertex co-
ordinates). The combination of profit and digability will in-
volve subjective weighting that is not handled by classical



optimization techniques. The solution space is combinato-
rially large with many local maxima. Genetic algorithms
and simulated annealing are two optimization techniques
that have gained popularity for dealing with these types of
optimization problems.

Simulated annealing is used in this paper. There are a
number of reasons for this choice: (1) genetic algorithms
require a “population” of solutions to be maintained, which
can become CPU demanding with a large number of vari-
ables, (2) simulated annealing is simpler to code, and (3)
recent developments in simulated annealing have made it
extremely fast and robust.

Metropolis and coworkers published a paper in 1953

outlining a numerical technique to determine molecular struc-

ture of alloys. The Metropolis algorithm was extended by
Kirkpatrick and coworkers in 1983 to address combinato-
rial problems in computer design; they called their solu-
tion method simulated annealing or SA. These combinato-
rial problems are typified by the famous traveling salesman
problem, that is, “what is the shortest path through n cities
returning to the starting city and visiting each city only
once?” The simulated annealing (SA) algorithm starts with
an initial path through all of the cities. Random changes or
perturbations to the path are proposed. Random changes
that lead to a shorter path are accepted. Changes that result
in longer paths are sometimes accepted. The path is per-
turbed until the path length has stopped decreasing. Con-
ditional acceptance of perturbations that increase the path
length is the key to the technique; these changes are some-
times accepted because they make it possible to avoid local
minima and find the global minima.

One can easily imagine application of the SA algorithm
to the problem of dig limit determination: initial dig lim-
its are iteratively perturbed until convergence to optimality,
that is, maximum profitability and digability. Two issues
need to be addressed: (1) the objective function that si-
multaneously accounts for profitability and digability, and
(2) implementation details of SA such as the perturbation
mechanism and annealing schedule.

The Starting Point for dig limit determination is a reg-
ular 2-D grid of expected profit. This block model of profit
could come from kriging or expected profit calculation us-
ing a set of simulated realizations (Deutsch, Magri, Nor-
rena, 1998). The expected profit depends on the mineral
commodities present, prices (p), recoveries (r), ore min-
ing cosls (¢,), waste mining costs (¢, ), and treatment costs
(¢¢). For simplicity, we show examples with a single metal
and constant recovery; however, it is no problem what-
soever to consider multiple metals, recovery curves as a
function or grade, and confounding factors such as variable
work index and contaminants,

The expected profit in a barren or low grade area is neg-
ative and constant at the waste mining cost —c,,, expressed
in dollars per tonne. In high grade areas, the expected profit
is positive and variable depending on grade, e.g., profit =
p-1+Z — ¢y —cy. The grades, or Z-values, may be modeled
by a set of realizations {z)(u),l = 1,...,L,u € A4},
where L is the number of realizations and u is a location

vector in the area A. The expected value of profit would be
an average over the uncertainty in grades, which is quanti-
fied by geostatistical simulation.

The expected profit is modeled by a 2-D block model
for a particular region of a particular bench. The resolution
of this block model should be about 1/2 to 1/3 of the blast-
hole spacing. A larger resolution would make it difficult to
capture irregular-spaced information from the bench above
and rapid changes in the grade. A smaller resolution could
not be justified from the available data. The resolution of
this block model does not have to reflect any particular “se-
lective mining unit” or SMU volume since the dig limits
define the mining unit and the dig limits will reflect both
profitability and digability.

A dig limit is a closed polygon that encloses ore or
waste. Each polygon is defined by a number of vertices
and vertex coordinates. Computing the fractional area of
grid blocks that fall within such a polygon is straightfor-
ward (see published code in Deutsch, 1990).

The Initial Polygons could be determined in a number
of ways. The geologist or engineer in charge of grade con-
trol could digitize initial polygons on the computer or on
manually. An automatic algorithm could be used to out-
line the ore and waste zones. We use an ad-hoc automatic
algorithm for initial polygon determination: (1) a set of
possible vertices is determined as the grid line intersec-
tions where there is an ore to waste transition, and (2) a
rule-based algorithm is used to trace around polygons. The
initial polygon lines are not allowed to cross or be too far
apart, which means a particular bench is initially divided
into a number of ore and/or waste polygons. Subject to di-
gability constraints, polygons may ultimately merge with
each other.

The Perturbation Mechanism is important in SA op-
timization problems. The perturbations must not be too
drastic or most perturbations will not be accepted and con-
vergence will be slow. The perturbations must not be too
minor or many perturbations will be required to achieve
convergence. Standard practice is to choose a reasonable
mechanism and any inefficiencies will be revealed in slow
convergence. The algorithm coded here only rarely takes
more than one minute on a PC for convergence; thus, the
algorithm is efficient or the inefficiencies translate to ac-
ceptable CPU time.

The mechanism chosen here is to (1) randomly pick
a polygon and vertex, and (2) choose to move that vertex
with uniform probability within a specified distance (about
20% of the grid block dimension). Figure 3 shows the re-
gion for perturbation for one vertex of a polygon. This
simple perturbation mechanism must be supplemented by a
series of rules including (1) an additional vertex is added at
the midpoint between the distant vertices if the vertices get
too far apart, (2) vertices are merged if they get too close,
(3) a candidate perturbation is rejected if the polygon lines
cross, and (4) polygons are merged if they get close or split
if they become narrow in a particular region. The rules re-
lated to polygon merging and splitting are particularly sen-
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Figure 3: Illustration of the region within which a grid node
could be moved for a candidate perturbation,

sitive; ideally, the number of polygons is determined by the
grade control expert in advance. The goal of the optimiza-
tion is to refine the exact location of the boundaries.

Profitability is straightforward to calculate. Ore and
waste polygons must be identified and handled differently.
The profit of an ore polygon is the sum of all fractional
blocks within the polygon. The profit for ore polygon i is
calculated:

nr ny

P = E Z f"ac‘[l;‘;,.‘y] 'P{i..-..iy) (1)

tiz=1ny=1

where fracj, ;, is the fractional area of the block indexed
at location (iz,iy) within polygon i and P(;, ;) is the
profit for location (iz,iy). The “profit” of waste polygons
multiplied by -1 to ensure that the units and the sign are the
same as for ore polygons, e.g., the profit of waste polygon
Jj is calculated:

ne ny
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The objective is to maximize profitability, that is, to ensure
that no profitable material is assigned to the waste polygons
unless the digability of the polygon is adversely affected.
A highly profitable block can not be included in waste be-
cause it will have a large adverse affect on profitability.

Profitability is defined as the sum over all np polygons
of the profitability of each:

np
Porotiabitity = »_ P
ip=1

where the profit of each polygon is defined depending on
the polygonal classification of ore and waste.

The fractional area routines of Deutsch, 1990 are im-
plemented in the code and used for input to equations (1)
and (2). An alternative is to use some kind of fast point-in-
polygon routines, but that is less exact and there is no need
for such approximations since the CPU speed is acceptable.
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Figure 4: An example equipment curve: the ordinate axis
is the penalty and the abscissa is the angle of operation.

Digability is an intuitive concept, but more ambiguous
to calculate. The concept of a penalty function is intro-
duced as a method to measure digability of torfuous and
smooth polygons. An example penalty function is shown
in

Figure 4. The penalty curve is for a hypothetical cable
shovel. The ordinate axis is the normalized penalty and
the abscissa axis is the angle defined by three consecutive
vertices. In this example, angles less than 40 are penalized
significantly. Digability is defined as -1 multiplied by the
sum over all polygons and all vertices of the angle penalty
coming from the equipment curve:

np nv(ip)

Pdigability = — Z Z Peniy,, (3)

ip=1 iv=1

where pen,,, is the penatlty at vertex iv of polygon ip.
There are np polygons and nuv(ip) vertices for polygon
ipip=1,...,np.

The examples presented later in this paper will attest to
the efficacy of this definition of digability; however, we
admit that experience is needed to accurately define the
equipment curve for different equipment. It is our expec-
tation that experts from a particular mine could calibrate
the equipment curve to the equipment, the operators, the
operating conditions, and visual geological control.

The Combined Objective Function is a weighted sum
of profitability and digability:

O = X« Pprofitabitity + (1 — A) Paigavitity  (4)

where A € [0,1] is a weight that balances profitability
and digability and serves as a “tuning” parameter, As )
approaches 0, the emphasis is on mining equipment con-
straints. As A approaches 1, the emphasis is on profitabil-
ity. This parameter cannot be chosen arbitrarily. If set
to one maximum profitability would be assured, but the
equipment constraints would be ignored. Equipment con-
straints are “real” and must be considered. In practice, A
can be determined automatically to ensure that both prof-
itability and digability play an equally important role (see
Deutsch and Cockerham, 1994),



Figure 5: An illustration of the probability of accepting
perturbations in simulated annealing (SA). The probabil-
ity of accepting unfavorable changes is very small at low
temperature.

The Acceptance Rule of SA is the key to the success
of the algorithm. There are many interesting papers on
the subject, see reference list, but we recall the essence of
the algorithm. All perturbations that decrease the objec-
tive function O — Oy, = AO < 0 are accepted; how-
ever, some perturbations that increase the objective func-
tion AQ > 0 are accepted. Conditional acceptance of per-
turbations that increase O should theoretically follow the
Boltmann distribution. The Boltzmann distribution sum-
marizes the notion that sometimes molecules move to higher
energy states, but less often at low temperature. The Boltz-
mann distribution:

p=eT°

where p is the probability of acceptance, AQ is the positive
increase in objective function, and T is the “temperature,”
which must be determined by well established empirical
rules. The annealing schedule is shown on Figure 5. There
is a small probability of accepting unfavorable changes at
low temperature. The idea is to start the “temperature” pa-
rameter quite high and reduce it to zero (see the literature
on the well established rules of how to reduce the temper-
ature parameter).

As mentioned, the T' parameter controls the decision
mechanism. Initially the ¢ parameter starts ay a high value
thus there is a high probability for accepting perturbations
that increase the objective funciton; virtually all perturba-
tions are accepted. As the algorithm proceeds the T' pa-
rameter is reduced and the probability for accepting unfa-
vorable perturbations is reduced. At the limit, only pertur-
bations lowering the objective function are accepted. Large
scale changes are made at high temperature and fine-tuning
of the limits takes place at low temperatures.

METHOD EVALUATION

The vertices of the initial dig limit polygon in Figure 6 are
interatively perturbed to conform to optimal dig limits that
yield maximum profit. The initial profit is calculated by
summing the profit earned by the fraction of ore blocks
falling within the dig limits.

Initial Ore / Waste Dig Limits

24.000

North

Waste

Figure 6: A map showing an initial dig limit polygon for
the map of true ore blocks.

This example is taken from Deutsch, Magri, and Nor-
rena, 1998. The true grades were generated by geostatis-
tical simulation. We acknowledge that great care must be
exercised in the use of numerical simulation to demonstrate
that a method is “optimal;™ however, we are not comparing
different estimation methods. Our goal is simply to show
different dig limits.

First, a fine scale model was generated of realistic com-
plexity. The fine scale true grade model was sampled at
some realistic spacing. Ramdom sample errors propor-
tional to the grades were added. The samples were then
used with kriging and the maximum profit selection proce-
dure ( MPS), at a coarser scale, to identify blocks of ore and
waste. For comparitive purposes, the true fine scale model
was block averaged up to the same scale as the kriged and
MPS model. The truth model is intended to mimic a dis-
seminated gold mine, and the following economic param-
eters have been selected: milling cost, ¢, = $12.00/¢t ,
ore mining cost ¢, = $1.00/¢, waste mining cost ¢, =
$1.00/t, recovery r = 0.8, price p = $12/g. These param-
eters give a marginal cutoff grade of 1.25¢/¢. The mining
units were 5m x 5Sm x 10m. $

The top map in Figure 1 shows the map of ore and
waste if the truth were known, a convenience of having cre-
ated the reality. The cutoff grade was used to identify the
ore and waste. The bottom left map shows ore and waste
blocks that were distinguished using kriging with the blast-
hole samples and the cutoff grade. The bottom right map
shows the result of the MPS procedure with the sample data
to discern between blocks. We will zoom in on the areas
blocked out with rectangles.

The blocked out area measure 10 blocks by 24 blocks
each. There are 83 true blocks of ore and 157 blocks of
waste. The kriged ore waste map shows 79 blocks of ore
and 161 blocks of waste. The MPS map shows 88 blocks



of ore and 152 blocks of waste. Kriging misclassified 20
ore blocks and 16 waste blocks. MPS misclassified 9 ore
blocks and 14 waste blocks. The maximum available true
profit is $ 28450.15. For easy comparison the profits in all
cases have been scaled to $30000 making the maximum
achievabe profit $30000.

The blocked out areas shown in Figure 1 were used to
evaluate the proposed dig limit determination method. We
first establish dig limits to the MPS profit data. Dig limits
are shown for varying degrees of relation between profit
and digability; the A parameter in the objective function
was altered. The results are shown on the following table:

Profit
No Penalty $ 18454
Moderate Penalty  $ 18027
Strict Penalty $ 16977

These profit numbers are calculated from the under-
lying true grades and not the profit derived from kriged
grades or the expected grade taken from the MPS results.
Figure 7 shows the dig limits for the first three cases (1) no
equipment constraints, (2) moderate equipment constraints,
and (3) strict equipment constraints, As expected, the profit
is highest when no equipment constraints are used, and
lowest when strict dig limits are used.

Expected profit can be derived directly from blasthole
kriging instead of MPS. The aim is not just to show that
MPS outperforms kriging in classification on average, but
to show that the proposed method for automatically fitting
diglimits is useful for different methods to establish block-
by-block estimates. The maps in Figure 8 show moderate
equipment constraints. The map on the left shows dig lim-
its knowing the true underlying grade distribution, the mid-
dle map shows the ore / waste blocks selected by kriging,
and the right hand map shows the ore waste blocks selected
using MPS. Indeed, the MPS procedure outperforms krig-
ing as shown in the table below:

Profit:  Profit:
Free Dig Limits
True  $30000 $25648
Kriged § 14919 § 14669
MPS  $18449 § 18027

Equipment selection can be aided by this procedure for
automatic dig limit determination. The proposed method
is used with different equipment penalty curves to consider
different mining equipment. The capital cost of the mining
equipment, the operating cost, and the different ore grade
and tonnes are then used in an economic calculator. These
results can be used to support other decision making con-
siderations. Figure 9 shows dig limits for two hypothetical
mining equipment scenarios. The equipment curve on the
left is for large equipment, and the equipment curve on the
right is for small equipment.

FUTURE WORK
A few academic examples are shown here. There are many
areas of outstanding work that require more complete de-
velopment. The most critical outstanding work is to apply

No Constraints
24

Strict Constraints
2l

Figure 7: Dig limits for the cases of (1) no equipment con-
straints, (2) moderate equipment constraints, and (3) strict
equipment constraints.
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Figure 8: The converged dig limits for the true, kriged, and
MPS ore - waste maps.
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Figure 9: Dig limits for two hypothetical mining equip-
ment scenarios.
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Figure 10: Future work includes planting seed poly gons
in both ore and waste.

the method at an operating mine and see if it is possible
to (1) calibrate a reasonable equipment curve, (2) compare
the results to existing grade control, and (3) refine the pro-
cedure for practical considerations that have not been used
in this academic exercise.

Handling multiple ore and waste polygons has not been
tested. There is no theoretical problem; however, there are
a number of ad-hoc programming considerations to simul-
taneously handle waste polygons in ore and and ore poly-
gons in waste. There are polygons inside other polygons,
there is a need to consider splitting and merging of poly-
gons, and the optimization must consider all polygons,

The problem of classification is not limited to the min-
ing industry. There are applications in the environmental
industry where areas to remidiate must be identified and
those areas cannot be flagged independently of surround-
ing areas. There are applications in the medical industry
where images and zones must be classified and this clas-
sification cannot proceed pixel-by-pixel; there is a larger
scale structure that must be observed.

CONCLUSION
Free selection has been the single most important limiting
assumption of geostatistics-based grade control. Optimal
mapping of block grades and classification of blocks is well



established. This paper presents an important extension to
those well known grade-control procedures: a technique to
determine optimal grade control polygons that account for
maximum profitability and digability.

Profitability is defined from the expected profit within
ore polygons and outside waste polygons. A geostatistical
model of grades provides the basis to calculate the expected
profit. The fractional area of each block inside the lim-
its is calculated analytically using public code. The poly-
gon vertices are constrained so that the boundaries do not
cross. Digability is defined as the ease of mining a par-
ticular polygon. Sharp angles over short distances lead to
a penalty. The magnitude of the penalties comes from an
equipment curve that is calibrated for each piece of mining
equipment.

There are many areas of future work required to sort
out all of the implementation details. Nevertheless, this au-
tomatic procedure for optimal determination of dig limits
accounts for many considerations that are awkward to ac-
count for by hand-smoothing of block-by-block values. It
1s easy to imagine an interactive software that would allow
the grade control geologist or engineer to semi-automatically
map dig limits with intervention in areas of great complex-
ity or unusual mining limitations.
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