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Abstract 
Reservoir simulation is often performed on irregular non-
Cartesian grids.  A common methodology for building the 
input reservoir models is to perform geostatistical reservoir 
models on a fine grid and then to average them to the coarser 
unstructured grid.  This method is computationally expensive; 
a more efficient approach is to modify the geostatistical 
algorithms to directly populate the unstructured grid. 

The required modifications are described in this paper.  
First, direct simulation must be used in place of the more 
common Gaussian simulation.  This is required because 
reservoir properties do not average linearly after Gaussian 
transformation; averaging is required because each grid block 
potentially has a different volume.  Second, volume averaged 
variogram or covariance values are required between two 
arbitrary blocks v1(u) and v2(u’).  These must be calculated 
quickly and efficiently.  Third, to maintain a reasonable speed 
of geostatistical simulation on unstructured grids a customized 
search and a non-stationary covariance lookup table of the 
average covariance between blocks is required.  Finally, 
directional permeability requires a special transformation to 
account for the nature of averaging. 

We present the implementation details and some results 
using tartan and radial grids. 
 
Introduction 
Unstructured grids may not be Cartesian and the grid blocks 
may have different volumes; however, irregular grids defined 
by local grid refinement, corner point grids, Voronoi grids and 
so on are all called unstructured grids. 

Geostatistical simulation algorithms are commonly applied 
to populate a regular grid of locations where the locations 

being simulated are all at the same volume scale as the data 
used for simulation.  The irregularity of the locations being 
simulated could be handled by simply modifying the search 
for previously simulated grid nodes.  The problem with 
unstructured grids is the volume difference between different 
grid blocks. 

Geostatistical prediction of grid blocks using data at much 
smaller scale and nearby grid blocks of different size is 
possible using the volume average of the covariance or 
variogram function.  The average covariance is classically 
defined as: 
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This is approximated very well by a numerical integration 
where 10 or more locations discretize each volume. 

Block cokriging with average covariance values between 
each of the (block) data and between the data and the block 
being estimated is well established as a means of integrating 
different data types at different scale.  Classical geostatistical 
references give all needed details1,2. This formalism amounts 
to assuming that the variable under consideration averages 
linearly.  Our main concern is that data do not average linearly 
after Gaussian transformation.  For example, averaging 
equally representative volumes of 1% porosity and 40% 
porosity.  The correct average is 20.5% because porosity 
averages arithmetically.  If the porosity histogram is 
lognormal, the back transformed average would be 6.3%, 
which is significantly biased.  For this reason, direct 
simulation must be used for geostatistical assignment of 
reservoir properties on unstructured grids. 

Two issues have slowed the widespread adoption of direct 
sequential simulation (DSS) for geostatistical simulation: (1) 
reproduction of the global histogram within reasonable 
statistical fluctuations, and (2) accounting for the proportional 
effect (higher variability in high valued areas) in the 
simulation.  Solutions to these problems are described herein. 

Sequential simulation requires that nearby data and 
previously simulated grid blocks be used in kriging.  The path 
in sequential simulation is random to avoid artifacts.  The 
typical spiral search of sequential simulation must be modified 
to account for the unstructured grid.  Two alternatives are 
presented: (1) spiral search according to a non-stationary 
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covariance lookup table, and (2) a super block search using the 
centroid locations of the grid blocks. 

DSS does not solve the problem for permeability since it 
does not average linearly.  The permeability tensor depends on 
the variability at all smaller scales and on the flow boundary 
conditions.  We propose the use of power law averaging to 
transform the directional permeability to a variable that 
averages linearly3. DSS is applied on the power law 
transformation and the result is back transformed.  The 
directional permeability values are different because the 
averaging depends on direction and yet the directional 
permeabilities are clearly related.  A mathematical relationship 
is developed.  Cosimulation is an alternative. 
 
Methodology I: Direct Sequential Simulation 
The key idea of direct sequential simulation (DSS) 
methodology has been available for many years4. Proceeding 
in a sequential path and drawing the simulated value from a 
distribution with a mean and variance given by cokriging will 
ensure that the variogram is reproduced.  Variety of different 
volume supports can be used.  The mean or kriging estimate 
can be written for any type and volume data: 
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By convention, the estimate ( )u*
0vy  is for variable type one 
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different volume support vi.  The well-known simple cokriging 
equations are used to calculate the weights: 
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The average (cross) covariance is defined in equation 1 and is 
discussed in more detail below.  The kriging variance is 
commonly used as the variance of the local distribution  
of uncertainty: 
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The kriging variance assumes homoscedasticity, that is, the 
variability does not depend on the local mean; however, real 
variables systematically show heteroscedasticity or 
specifically the proportional effect.  Figures 1 and 2 show how 
data in original units systematically show a proportional 
effect.  These figures also show that the proportional effect is 
largely removed by a univariate Gaussian (normal scores) 
transformation.  This justifies the common practice of 
sequential Gaussian simulation assuming that there is no 
proportional effect, that is, homoscedasticity.  Many data sets 
were checked with the same results: real data shows a 
proportional effect and that effect is essentially removed after 
normal score transformation. 

We suggest that the DSS procedure (1) use a standardized 
variogram in kriging, (2) calculate the standardized kriging 

variance ( )uK
2σ , and (3) the rescale that variance to a local 

measure of variability ( )uQS
2σ  by: 
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This requires two additional steps (1) fitting the proportional 
effect f(m), and (2) calculating the local mean at each location 
m*(u).  The proportional effect can be fitted with regression 
from plots like those shown in Figures 1 and 2.  The local 
mean can be calculated by a number of methods: kriging with 
a large search radius or moving window averages. 

The local distributions in DSS are parameterized by a 
mean (see Equation 2) and variance (see Equation 5).  The 
shape of each conditional distribution must also be 
determined.  A framework for the first requirement has been 
presented by Tran et. al5. A series of distributions, 
parameterized by estimate and variance that result in the 
global distribution being honored are constructed. This 
procedure utilizes the link between the global direct 
distribution and the Gaussian distribution.  The simulated 
value zs for quantile q is written: 
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where m and σ are the mean and standard deviation of the 
local distribution.  
      It has been demonstrated by Oz et. al6. that the above 
quantile transformations may be avoided by characterizing the 
Z distribution with Hermite polynomials. 
     Regardless of the procedure applied to calculate the valid 
local distributions, there is a need to avoid repetitive 
calculations of the Z space quantiles.  For example, given 100 
quantiles are required to characterized the local distributions 
and 1,000,000 nodes in the model, this results in 100,000,000 
quantile calculations for each realization. 
      Repetitive calculations are avoided by building a local 
distribution look up table.  A range of means and variances of 
the standard normal distribution is discretized and the 
resulting Z space local distributions are calculated.  The means 
and variances of these new distributions are calculated and the 
distributions are stored in a look up table.  To speed up table 
retrieval a super block search is applied.  An example local 
distribution look up table is illustrated in Figure 3. 

These two important recent developments (the use of a 
quasi-stationary variance and the local distribution shape 
determination) have made the well known DSS approach 
suitable for practical application. 
 
Methodology II: Average Covariances 
The common approach to calculate the mean covariance (refer 
back to equation 1) between two volumes (v1 and v2) is to 
discretize the volumes and average the point covariance over 
all combinations of discretized nodes between v1 and v2. 
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An acceptable number of discretizations in 3-D is 4 in each 
direction7. An average covariance calculation requires 46 = 
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16,384 calculations.  Steps have to be taken to keep CPU time 
under control. 

One way to speed up the covariance calculation is to build 
a covariance look up table that corresponds to each variogram.  
This replaces the variogram calculation with an index 
calculation.  This lookup table must have sufficient detail to 
avoid numerical errors in subsequent calculations; no 
problems have been found when 100s of points are used.  
 
Methodology III: Search/Covariance Lookup Table 
A nonstationary average covariance table is built to further 
reduce redundant calculations.  The average covariance 
between all volumes that are closer than the variogram range 
are calculated and stored.  Then, during DSS, the covariances 
needed for kriging are read directly from this table. 
      The covariance table includes all possible combinations of 
average covariances between volumes, ),( ji vvC .  This 
results in redundancy in the nonstationary average covariance 
table since ),( ji vvC  = ),( ij vvC , but greatly simplifies the 
look up of average covariance values.  This redundancy allows 
the covariance table to be divided into separate subsets with 
all the required covariances associated with a specific volume 
in a subset.  Fast lookup is accomplished with a pointer array 
that indicates the location of each subset within the  
covariance table. 

In addition the nonstationary covariance table is sorted in 
the order of increasing covariance within each subset.  This 
allows the nonstationary covariance table to be used directly in 
the search.  The relevant grid blocks at a particular location 
are identified from the covariance table.  The closest grid 
blocks can be checked first until a sufficient number  
are found.   

Given a positive definite covariance model and correctly 
calculated mean covariances the kriging variance is non-
negative.  Nevertheless, when simulating irregular volumes, 
screening can cause extreme positive and negative kriging 
weights.  See Figure 4 for example configurations that result 
in extreme weights.  This is true regardless of the precision 
with which the average covariance values are calculated.  
Such extreme weights are rare when simulating directly to a 
regular grid.  These extreme weights will cause the kriged 
estimate to be unusually large or small.  These extreme 
weights may be dealt with by (1) modifying search to remove 
the data that are excessively screened, by (2) iteratively 
solving the kriging matrix or by (3) applying an octant search 
to reduce the potential of screening.  

In the first method the unusual weights are eliminated by 
rejecting any conditioning data or previously simulated blocks 
that are “shadowed” by a closer data (see Figure 5).  This is 
accomplished by creating a Boolean matrix representing the 
nodes within the range of correlation of the location being 
estimated.  When a datum is selected to condition this 
unknown location (at the center of the Boolean matrix) a 
shadow template is positioned with the apex on the datum.  

All locations within this template are set to ‘false’ and may not 
be subsequently selected as conditioning data for this estimate. 

In the second method the search is performed in the usual 
fashion and kriging matrix is solved.  Then the weights are 
checked, and if any weights are extreme, thresholdi ≥λ , 
then the corresponding data is removed and the kriging matrix 
a solved again.  This method has the advantage of applying the 
correction only when required and should not significantly 
increase CPU time since cases with extreme weights are 
generally infrequent. 

In the third method the number of data gathered from each 
octant is limited.  Limiting the conditioning from each octant 
reduces the opportunity for screening. 
 
Methodology IV: Permeability Averaging 
Implicit to linear estimation (equation 2) and integration for 
average covariance values (equation 1) is the assumption or 
arithmetic averaging, that is, the variable averages linearly.  
Direct simulation removes the requirement for Gaussian 
transformation, which has been a historic problem; however, 
the problem remains for permeability. 

Power law averaging effectively transforms the directional 
permeability to a variable that averages linearly.  The general 
formula for power law averaging of the continuous variable K 
is written: 
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v is the volume over which the average is calculated, k(u) is 
the permeability at location u within the volume, and ω is an 
exponent of averaging.  The effective permeability, Keff, of a 
3-D network of blocks must take a value between the 
harmonic and arithmetic average of the constituent 
permeabilities, depending on their spatial arrangement.  The 
lower-bound harmonic average can be seen as a power 
average with ω = -1; this is representative of flowing through 
a series of alternating permeability layers.  The upper-bound 
arithmetic average can be seen as a power average with ω = 
+1; this represents parallel flow through alternating 
permeability layers.  The geometric average is obtained at the 
limit when ω = 0. 

The averaging power for each geologic setting must be 
calibrated.  The calibration process for a single geological 
model is straightforward.  The numerical model of small-scale 
permeabilities is subjected to flow simulation with specified 
boundary conditions to obtain the true effective permeabilities: 
KX, KY, and KZ.  The directional averaging exponents, ωX, and 
ωY and ωZ, are chosen such that the power-law average 
matches the flow simulation results. 

To account for uncertainty and fluctuations in the 
geological models, the calibration process is repeated for 
multiple realizations of the same geological model.  Once an 
assemblage of directional ω values have been calculated, the 
resulting distributions can be checked.  The mean value will 
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provide a single estimate for ω in a given direction, and the 
distribution will show the uncertainty in ω for the geological 
model3,8,9.  

DSS is applied on the power law transformation of 
variables that do not average linearly and the result is  
back transformed.   
 
Application to Tartan Grids 
The previous sections have discussed all of the methods 
required to apply DSS.  They could be used/applied to any 
unstructured grid.  A program called TARTANSIM has been 
assembled from the SGSIM program from GSLIB10 for 
demonstration.  This program allows the “dx” and “dy” values 
to be specified as arrays instead of as constant values.  The 
correct average covariances are calculated and other 
implementation details are considered. 

As a first example, unconditional simulations generated by 
SGSIM and TARTANSIM were compared (see Figures 6 and 
7).  The SGSIM realizations were simulated on a 100 x 100 
grid and then block averaged to a 15 x 15 tartan grid. The 
variogram was set as a single isotropic spherical structure with 
a range equal to 1/5 of the size of the model.  The e-type 
estimates over 201 realizations were compared; they were 
identical, which indicates that TARTANSIM results are 
unbiased.  Local distributions of uncertainty were also 
validated.  Finally, the covariance between adjacent blocks 
was checked.  The actual mean covariance calculated with the 
variogram model was compared to the covariance between 
adjacent blocks over 201 realizations.  The covariance values 
are reproduced. 

The GSLIB data set was then used as conditioning data.  
See Figure 8 for the location map.  201 realizations where 
generated with SGSIM with a 100 x 100 resolution.  These 
realizations were block averaged to a tartan grid (see 9 for 
some example realizations).  The same conditioning data were 
applied to TARTANSIM and the simulation was performed 
directly to the tartan grid (see Figure 10 for some  
example realizations). 

The e-type estimate was calculated over the 201 
realizations for both TARTANSIM and block averaged 
SGSIM results (see Figure 11).  The e-type maps indicate that 
the conditional means from TARTANSIM are similar to the 
theoretically established SGSIM results.  Some example local 
distributions of uncertainty were compared and the covariance 
between adjacent blocks was once again checked.  The 
covariance from the realizations is less than the model 
covariance (in both SGSIM and TARTANSIM) because of the 
conditioning data.  The results are correct. 

A module is included with TARTANSIM for the 
simulation of nested radial grids.  The radial grids are 
simulated after the tartan grid.  The method for simulation of 
the radial grid is similar to that of TARTANSIM.  An adapted 
nonstationary covariance table and a matrix building 
subroutine are used.  Since all the mean covariances are 
precalculated and stored in a 2D matrix the search and 
construction of the kriging matrices is very rapid.  An example 

with the previous conditioned data set and 6 nested radial 
grids is shown in Figure 12.  Figure 13 zooms in one of the 
radial grids. 
 
Limitations 
The methods presented in this paper make it feasible to 
directly populate unstructured grids with geostatistical 
techniques.  There are, however, a number of limitations. 

The first limitation is consideration of geological rock 
types.  Assigning a discrete categorical rock type to relatively 
small geological modeling cells is reasonable; large grid 
blocks, however, are almost certainly a mixture of different 
rock types.  This makes it awkward to condition the 
assignment of porosity and permeability. 

Another limitation is the inability to use conventional 
validation techniques on the simulated realizations.  Common 
practice when simulating to regular grids is to validate the 
results by checking the resulting distributions and spatial 
correlation (the variogram) of the realizations.  There are a 
variety of checks that may be performed with realizations 
based on unstructured grids. 

The dispersion variance may be checked by calculating the 
variance of similar sized blocks, v .  Then this dispersion 
variance may be compared with the dispersion variance 
predicted by the variogram.  

 
),(),(),(),(),(2 VVCvvCvvVVVvD −=−= γγ      (9)                

 
Also, the average covariance may be calculated between 

blocks with multiple realizations. 
 

),( 21 vvC }{}{}{ 2121 vvvv ZEZEZZE ⋅−⋅≅           (10) 
 

This experimental block to block covariance may be compared 
with the predicted from the variogram (see equation 7).  
 
Conclusions 
The major implementation obstacles to DSS, (1) reproduction 
of the global histogram within reasonable statistical 
fluctuations, and (2) accounting for the proportional effect 
(higher variability in high valued areas) in the simulation, 
have been discussed and solutions have been presented. 
     Key implementation details for the direct simulation to 
unstructured grids have been documented in this work.  These 
methods describe the efficient calculation of (1) valid Z space 
distributions of uncertainty for all possible kriging estimates 
and estimation variances and (2) mean covariances for 
unstructured grids based on rectangular parallelepipeds. 

Search issues which result in anomalous weights, out of 
place local realizations, and negative variances have been 
discussed and demonstrated.  Three techniques, template 
screening of conditioning data, iteration of the kriging solution 
and octant search have been introduced.   

The method of applying power law averaging to variables 
that do not average linearly has been discussed.  This forward 
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transform results in a linear averaging variable that may be 
simulated directly and then back transformed a posteriori.  

DSS to unstructured grids has been demonstrated through 
an example program TARTANSIM.  A tartan grid was 
simulated with DSS the results validated by comparison to 
block averaged SGSIM results. 
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Figure 1: Color scale map of the Walker Lake data variable 
(top), the proportional effect of the original variable (middle), 
and the proportional effect of the normal scores variable 
(bottom).  Note the strong proportional effect (relationship 
between standard deviation and mean) in original units and the 
weak proportional effect after normal scores transformation.  
 

 

 
Figure 2: An illustration of the proportional effect for porosity 
data from a North Sea reservoir (top two figures) and for 
permeability from the same reservoir.  Note the strong 
proportional effect for both porosity and permeability.  Note 
also how this proportional effect disappears after normal 
scores transformation. 
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Figure 4: A variety of estimation settings that resulted in 
extreme weights.  The estimation location coded with a weight 
of 0.0 and a grey dot and the conditioning data (previously 
simulated nodes) are coloured according to their weights. 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5: An example of the Boolean matrix that prevents 
screened data from being selected as conditioning data.  This 
is a 2D example where three data have already been chosen as 
conditioning (circles).  The shadow templates (grey areas) are 
located with their apexes on the accepted conditioning data 
and radiate away from the location being estimated (square  
at center).   

 
Figure 6: Example unconditional SGSIM realizations and the 
associated block averaged results. 
 
 
 

 
 
Figure 7: Example unconditional TARTANSIM realizations. 
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Figure 8: GSLIB data locations for conditional simulation. 
 
 
 
 

 
Figure 9: Example conditional SGSIM realizations and the 
associated block averaged maps. 
 
 

 
Figure 10: Example conditional TARTANSIM realizations. 
 
 
 

 
Figure 11: The e-type estimates over 201 realizations for both 
TARTANSIM and block averaged SGSIM. 
 
 
 

 
 
Figure 12: A TARTANSIM realization with six embedded 
radial grid simulations. 
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Figure 13: An example of a nested radial grid. 
 


