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ABSTRACT 
Indicator simulation allows specification of different continuity of high and low values through the 
use of grade thresholds. The sequential implementation of indicator simulation has been widely 
used, but the problem of order relation deviations remains a significant drawback. A new 
procedure for “Hierarchical Indicator Simulation” is introduced that avoids order relations and 
offers greater flexibility than the conventional sequential approach. The new implementation 
simulates all locations at the largest threshold and then considers decreasing thresholds in turn. All 
nodes with grades that are above the previous threshold are excluded from the domain of the 
current threshold and therefore, they are not used as conditioning data. The probability of being 
above or below the threshold is calculated using simple indicator kriging using all conditioning 
data in the domain, thus the covariance structure is preserved. The theoretical framework of this 
new approach is fully developed. Practical implementation details are discussed. Application to a 
copper deposit shows the advantages and drawbacks of the method. Finally, the possibility of 
incorporating multiple-point statistics is discussed. 
 
INTRODUCTION 
Stochastic simulation aims to reproduce the spatial patterns observed from samples. The better the 
reproduction of these features, the better the decisions that will be made based on the numerical 
models. The characterization of the spatial continuity of the variables is often done using two-
point statistics such as the variogram or covariance function. 

Gaussian simulation methods such as turning bands and sequential Gaussian simulation rely 
on the multivariate Gaussian assumption, that is, all bivariate, trivariate, and higher statistics are 
deemed to be multivariate Gaussian. If the assumption is correct, then these methods fully 
characterize the multivariate distribution of the variable with only two-point statistics required 
from the data. However, variables in the Earth Sciences are not multivariate Gaussian. A 
transformation is applied to enforce univariate Gaussianity, although bivariate and higher order 
distributions cannot be enforced through transformation and are usually not even checked. Any 
departure of the real data from the multivariate Gaussian model leads to numerical models that 
may be unsuitable for decision-making. 

The non-parametric formalism of indicators was introduced in 1982 by A. G. Journel. It 
provides a richer approach that allows us to model variables that depart noticeably from the 
bivariate Gaussian assumption (Journel 1982; Journel, 1983). Sequential indicator simulation 
avoids the need of a bi-Gaussian assumption. It permits the random variable to have different 
spatial continuity for high and low values; the Gaussian formalism requires the spatial continuity 
to be symmetric with respect to the median. The reproduction of the global histogram is ensured 
by the reproduction of the proportions at every threshold, therefore there is no need to assume any 
parametric shape of the conditional distributions. The simulated values are drawn from these 
conditional distributions.  
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One of the advantages of the indicator formalism is that they can incorporate higher order 
statistics than the two-point covariance function. This could allow reproduction of more complex 
features, such as curvilinear patterns and large range connectivity. Simulated annealing and 
iterative techniques have also proven to be efficient in this task (Deutsch and Gringarten, 2000). 
One of the main difficulties with multiple-point statistics is their inference. In current applications, 
these statistics are retrieved from training images taken from outcrops, conceptual geological 
models at different scales or realizations of some other algorithm such as object-based modeling 
(Strebelle and Journel, 2000).   

We propose the use of “runs” (Figure 1), that is, sets of adjacent samples (composites) with 
grades higher than a given threshold (Mood, 1940). In mining, the frequency of runs can be easily 
obtained from drillhole data. They can be calculated for different grade cutoffs. In this context, 
indicator techniques appear as the obvious choice to incorporate these multiple-point statistics.  

The inference of runs in the horizontal direction may require the assumption of some 
anisotropy ratio from geological interpretation of the mineralization. Incorporating runs will 
improve the reproduction of large range connectivity, but will not help in getting curvilinear 
patterns since it is by definition a linear measure of connectivity. 

The use of runs is compatible with the indicator approach, but requires a framework different 
than the one provided by sequential methods. We present a hierarchical implementation of 
indicator simulation that will allow the subsequent incorporation of the runs to improve the 
resulting realizations, and therefore lead to better decisions based on the numerical models 
generated. 

We start with a short review on indicator simulation and then propose our hierarchical 
framework for simulating thresholds from the highest to the lowest. This approach will permit the 
subsequent incorporation of runs as a multiple-point statistic inferred from the data. We conclude 
with a practical application of this new implementation of indicator simulation. 
 
REVIEW ON INDICATOR SIMULATION 
The basic idea behind indicator techniques is to code the data as probabilities and then estimate the 
conditional distributions at unsampled locations directly from them. Then a simulated value can be 
drawn directly from the conditional distribution. Previously simulated nodes are included in the 
conditioning information to obtain the correct covariance between simulated values as well as 
between simulated values and the original sample data.  

Data from different sources, at different supports and of different precision can be 
simultaneously considered (Goovaerts, 1997; Deutsch and Journel, 1998). If K thresholds are 
used, the estimation of the cdfs can be done by: 

 
• Kriging the indicator values at a given threshold (Solow, 1984). This disregards the 

information at different thresholds than the one being estimated. It requires modeling of  
direct indicator variograms. K

• Performing median indicator kriging. The mosaic model is assumed, that is, all indicator 
variograms and cross variograms are proportional to a common variogram model, or 
equivalently, all correlograms are equal (Journel, 1984). 

• Cokriging the indicators at different threshold. Although this is theoretically better, 
practice has shown that it requires considerably more inference effort and brings little 
improvement (Goovaerts, 1994; Goovaerts, 1997). It requires modeling of 2)1K( +⋅K  
direct and cross indicator variograms. 

• Cokriging the indicators at the threshold being estimated with the uniform transform of 
the data, that is, with their standardized rank ordering. This technique is known as 
probability kriging (Sullivan, 1984; Verly and Sullivan, 1985). This method requires the 
inference and modeling of direct and cross variograms. 1K2 +⋅
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Figure 1: Schematic showing the calculation of frequency of runs in a drillhole with 22 
samples. The solid line represents the actual grade, the black dots are the sample values. 
Runs are presented as thick solid lines under each threshold. For threshold z1, there is one 
run of length 16; z2 has one run of length 13; z3 presents two runs of length 4 and 5 
respectively; for z4 there are two runs of length 2 and one of length 1; finally, z5 does not 
present any run. 

 
• Simple kriging with local prior means. A secondary variable is used to calculate locally 

the mean of the primary. Then simple kriging using this mean is performed using the 
indicator data of the primary variable (Deutsch and Journel, 1998). 

• Soft Cokriging. This corresponds to cokriging the indicator transform of a primary 
variable, using also the indicator transform of a secondary variable (Goovaerts, 1997). 

• Cokriging the indicators at the threshold of interest using only one secondary datum: the 
colocated one. This avoids the demanding modeling of cross indicator covariances (Zhu 
and Journel, 1993). 

 
Several important advantages are derived from this basic idea of directly estimating the 

probabilities:  
 
• The spatial correlation at different thresholds can be specified differently, 

3 



• Secondary information can be coded in the same probability units, which gives a 
flexibility to integrate such information, 

• Change of support can be performed, and 
• Recoverable reserves of blocks can be calculated. 

 
The implementation of indicator methods is not always straightforward: 
 

• The coding of soft data as if they were hard data is useful, but secondary information 
cannot be used as primary, even though the coding is the same. Some model of 
coregionalization has to be used. 

• The use of data at different support is also a difficult task, since the correlation between 
the variables changes at different supports. 

 
Drawbacks of Indicator Methods 
Two are the main problems of indicator techniques: order relation deviations and the interpolation 
between and extrapolation beyond the discrete estimated probabilities at thresholds : K,...,1k,zk =

 
• Order relation deviations. The estimated probabilities generated through indicator 

kriging must satisfy the conditions of a cumulative distribution: they have to be non-
decreasing between 0 and 1 (Journel, 1984; Goovaerts, 1997; Deutsch and Journel, 1998). 
The kriged indicator value can lie outside the interval [0,1] because the kriged estimate is 
non-convex. Lack of data in some classes and differences in the variogram models from 
one threshold to the next are important factors that could lead to a non-increasing 
function. The a posteriori forward and downward correction of the ccdfs works well in 
general, as documented by Deutsch and Journel. Although more difficult in its 
implementation, constraining the kriging system, so that it satisfies the order relations by 
construction is also a solution (Goovaerts 1997). 

• Interpolation and extrapolation of the conditional distribution. Since the number of 
data is limited, the distribution of local uncertainty is discretized using only a few 
thresholds. The continuous ccdf at every location  is then represented by a set of points 

 with , that lie in [0,1]. It is therefore necessary to interpolate the 
values between thresholds, and extrapolate the values beyond the smallest and largest 
values. It may be sufficient to interpolate linearly between the indicator values at 
thresholds  and . When extrapolating the tails, a minimum and maximum possible 
values should be considered and the extrapolation should not be done linearly, since this 
would imply an unrealistic uniform distribution between the minimum value and , and 
between  and the maximum value. Power and hyperbolic models are sometimes used 
to extrapolate the ccdfs beyond the lower and higher indicator values. Another possibility 
is to consider the global cdf and scale it to extrapolate the tails of the ccdfs. There is no 
satisfactory solution. 

u
[ *
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Indicator Simulation 
Indicator simulation uses the ccdf obtained through indicator kriging to draw a simulated value by 
Monte Carlo simulation. It is important to emphasize that the conditioning data used to get the 
ccdf consists of actual data and previously simulated values within the search neighborhood. In 
this way, the covariance is reproduced. 

The sequential simulation approach for a grid of N  odes proceeds as follows:  
 

• Step 1: Randomly pick a node. 
• Step 2: Search for nearby data and previously simulated nodes. 
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• Step 3: Perform indicator kriging at each threshold to build the ccdf. 
• Step 4: Draw by Monte Carlo simulation, a value from that conditional distribution. 
• Step 5: Go to Step 1. 

 
The conditioning information increases from n  data to 1Nn −+  data and previously simulated 
nodes. The bigger the number of conditioning data, the larger will be the kriging system. This 
problem is overcome by using a search neighborhood and maximum number of data within that 
radius. 

Variogram reproduction depends on different factors such as the size of the search 
neighborhood and the importance of high order correlation compared with two-point statistics. 
 
Generalization of Indicator Kriging 
A brief presentation of generalized indicator approach follows (Guardiano and Srivastava,1993). 

Consider  dependent events . They can be sequentially estimated or simulated 
using the following expression that comes from a repeated application of Bayes postulate: 

N N,...,1j,A j =

 
{ } { } { }
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This relation is general and exact (Journel, 1983). Two implementation problems arise: 
 

• Inference of the  conditional probabilities N { }1i,...,1j,A|A ji −=Prob  with i . N,...,1=

• The size of the conditioning information increases from  to , i.e. the kriging 
system to be solved becomes too big. 

n 1Nn −+

 
Due to the difficult inference of those conditional probabilities, some approximations are made to 
implement sequential indicator simulation. The conditional probability F  is interpreted 
as the conditional expectation of an indicator random variable I  given the n  data. The 
conditional probability should then be obtained by cokriging using the 

))n(|z;u( k

)
Kn

z;u( k

⋅  indicators. It is 
assumed that the indicators for the same threshold are more relevant than the indicators for other 
thresholds. The calculation of cross-correlations is also considered too demanding. Thus the 
probability is approximated by: 
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All cross-correlation between indicators at different thresholds are then ignored. This first 
approximation is made because, in general, the improvement in the resulting conditional 
distributions does not justify increasing the work required (Goovaerts, 1994). 

The conditional expectation can be written as a function of the conditioning information in the 
following manner: 
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The classical application of indicators considers only the use of univariate and bivariate statistics 
(the sample histogram and the covariance or variogram function), since the inference of higher 
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order is in general difficult. This is done by retaining only the first  terms of the previous 
expansion; however the use of higher order statistics could be considered, through the use of 
extended normal equations (Guardiano and Srivastava, 1992). This approach was originally based 
on multiple-point statistics inferred from training images. The use of runs to estimate high order 
covariances would avoid the need of training images, by inferring the multiple-point covariances 
directly. 

1n +

 
HIERARCHICAL INDICATOR SIMULATION 
The idea of proceeding hierarchically was originally proposed by Michel Dagbert (Dagbert, 1990), 
under the name “Nested Indicator Approach”. The thresholds are considered one at a time, and 
only the subset of data, which has a value above the previous cutoff, is used to estimate the 
conditional probability at the current threshold. The domain from which data are used to estimate 
the conditional distribution at subsequent threshold decreases and order relations are avoided by 
construction. These conditional distributions were used for estimating block grades and 
calculating recoverable reserves, but they were not used to generate realizations of the random 
function. We propose a simulation method that combines Dagbert’s original idea with the well-
known sequential framework, to simulate one threshold at a time, starting at the highest.  
 
Procedure 
The algorithm starts by doing a binary sequential indicator simulation at the highest threshold. If 
the value obtained is one, i.e. the node has a grade less than or equal to the cutoff, then a simulated 
value is not assigned to that node yet, and the node will belong to the domain for the next cutoff. 
However, if the value is found to be above the current threshold, i.e. it has a value of zero in the 
binary simulation, then an actual simulated value is drawn between the current (highest) cutoff and 
a maximum value defined by the user. For the next cutoff, a reduced domain is available. Again, 
within that domain a binary sequential indicator simulation is performed, and the values above the 
threshold are taken out the domain for the next cutoff. 

The algorithm proceeds starting at the highest threshold and going down: 
 

1. The domain corresponds to all uninformed nodes.  
2. Pick a node in the domain randomly. 
3. Calculate the simple indicator kriging estimate at the current threshold given the nearby 

data and previously simulated nodes.  
4. Draw a random number and assign a one if it is lower or equal than the simple indicator 

kriging estimate of the probability at that threshold, and a zero otherwise. 
5. Go to 2 until all nodes in the domain have been visited. 
6. If the value is above the threshold (a value of zero was assigned in the binary simulation) 

eliminate the node of the domain for the next threshold. 
7. If the value is below the threshold include it in the domain for the next threshold. 

 
At the end of the simulation, each node has been assigned to one of the K  classes, if 

thresholds were used. Then at each node a simulated value is drawn into the corresponding class 
at which it belongs. Some shape has to be assumed for interpolating between thresholds and 
extrapolating to a maximum and minimum value. 

1+
K

Since we are basically applying sequential indicator simulation in restricted domains, the 
algorithm ensures the reproduction of the covariance function within that domain. The fact that the 
nodes higher than the previous threshold are not considered as conditioning data generates some 
distortion on the covariance reproduction, since the nodes in the domain are drawn uncorrelated 
with the nodes kept out of the domain.  
 
Example 
The algorithm is illustrated on Figure 2 for a simple example. Three thresholds have been 
considered and a one-dimensional grid of ten nodes is being simulated. Starting at the highest 
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threshold z3, all ten nodes are simulated to be above or below that threshold. Nodes that have been 
assigned a zero are higher than z3 and therefore simulated values are drawn between z3 and a 
maximum value zmax, and with some extrapolation shape. All the nodes that have a grade higher 
than z3 are not available at the following threshold z2. The algorithm continues in this fashion up 
to the last threshold z1. The nodes assigned a zero in the binary simulation are now drawn between 
z1 and z2 with some interpolation shape, and the values that are below z1 are drawn as well 
between a minimum value zmin and z1. This concludes the simulation. 
 Notice that sequential indicator simulation is used to realize the binary simulation within the 
domain. Therefore the values assigned as zero by this binary simulation are used as conditioning 
data for the following nodes at that same threshold. However, when all the nodes at the current 
threshold have been visited and the grid has been populated with ones and zeros, then the nodes 
with zeros are excluded from the domain for the next threshold and therefore they are not 
considered as conditioning values for calculating the conditional distributions at the lower 
thresholds. 
 

 
Figure 2: Illustration of the hierarchical indicator simulation method. The allowed domain is 
shown in gray for the following threshold. Nodes that have already been simulated above the 
previous threshold are frozen. They are represented as black boxes. 
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CASE STUDY 
Drillhole data from a copper deposit are used to illustrate the methodology. The dataset has 869 
ten-meter composites with copper grade, distributed on a 600 by 400 m2 area and over 270 m in 
depth. The declustered histogram and location map of drillholes is presented in Figure 3. 
 Five thresholds are used to discretize the conditional distributions. These are placed at regular 
quantiles. The mineralization is isotropic in the horizontal plane, but the continuity changes in the 
vertical direction. Three dimensional variogram models are fitted to the experimental variograms, 
as shown in Figure 4. The variogram models are summarized in Table 1. 
 

Quantile Nugget  
Effect 

Model  
Type 

Contribution Range 
Horizontal 

Range 
Vertical 

10 0.20 Exponential 0.80 650 100 
30 0.05 Exponential 0.95 380 50 
50 0.10 Exponential 0.90 260 45 
70 0.20 Exponential 0.80 130 30 
90 0.30 Exponential 0.70 65 15 

Table 1: Variogram models for five thresholds 

 
Ten realizations are generated using Hierarchical Indicator Simulation. The model consists of as 
120 by 80 by 27 cells with spacing of 5 m in the horizontal plane and 10 m in the vertical. This 
model is dense enough to calculate for example block averages for units of 20 by 20 by 10 m3. 
Maps showing some of the levels for one realization are presented in Figure 5. Variogram 
reproduction is shown in Figure 6. The variograms are well reproduced for high thresholds, but 
show a higher nugget effect and more spread for lower thresholds. This is due to the restricted 
domain utilized for simulating lower thresholds. The nodes that are excluded from this domain are 
not directly correlated with the nodes being simulated at that threshold, so there are more 
fluctuations in the variogram. Also, the nugget effect is increased for the same reason. Although 
this is a drawback of the method, we must emphasize that low values are often the less interesting, 
and therefore focus is put on reproducing the features of high values. Finally, we must mention 
that this method is being proposed as a framework for incorporating multiple-point statistics.  
 
 

 
Figure 3: Declustered histogram and location map of drillholes – Copper deposit dataset. 
Drillholes are in a pseudo-regular grid with a spacing of approximately 70 m. 
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Figure 4: Indicator variogram models. Three dimensional anisotropic variogram models 
were fitted to the experimental variograms. As usual, high grades present a higher nugget 
effect and are less continuous than low grades. 

 
 
 
 
 

 
Figure 5: Four planviews of a particular realization. The continuity appears clearly different 
for high and low values.  
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Figure 6: Indicator variogram reproduction. High thresholds show a very good reproduction 
of the variogram. However, for lower thresholds reproduction of the nugget effect is more 
difficult due to the restricted domain and the fact that nodes are simulated independently of 
the ones higher than the previous threshold. 

 
 
COMMENT ON INCORPORING MULTIPLE-POINT STATISTICS 
Considering runs when simulating if the node is above or below the current threshold will correct 
the smearing of the variogram. Runs can be seen as products of indicators: the data that form a run 
have grades larger than the cutoff, and therefore all their indicators are 0. When using runs to 
decide if we set a node below the threshold, we are basically deciding if we want to cut the run 
into two shorter ones or reduce its size by one. This fact may imply that variogram modeling will 
not be needed and the entire simulation could be based solely on the reproduction of the histogram 
of length of runs at that particular threshold. This would simplify geostatistical modeling 
considerably. The only decisions that remain are how many and which thresholds to use. Wrong 
decisions will lead to poor inference and unsatisfactory numerical models. 
 
CONCLUSIONS 
Hierarchical Indicator Simulation is a new implementation of indicator simulation based on 
Dagbert’s original idea of estimating nested indicators. It fixes the problem of order relation 
deviations, which is one of the biggest drawbacks of sequential indicator simulation. The reduced 
domain may generate some problems with variogram reproduction. This algorithm is very suitable 
to incorporate multiple-point statistics in form of runs, that is, of sets of adjacent samples with 
grades higher than a given threshold. By incorporating these runs, the distortion on variogram 
reproduction will be overcome and furthermore, the numerical model will share more important 
features of the true underlying phenomenon: large range connectivity will be reproduced. 
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