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ABSTRACT

Power law averaging was developed to scale fine grid

permeability models to effective permeability models on a

coarse grid for flow simulation.  Direct calculation of

effective permeability with selected boundary conditions

replaced the need for heuristic scaling procedures such

as power law averaging.  New areas of application have

emerged for power law averaging.  First, successful

inversion of well test and production data require

techniques to simultaneously account for small scale

data, coming from core and log measurements, with

large scale data coming from well test and production

data.  The power law formalism can be used to transform

the permeability data coming from different scales so that

the transformed permeability averages linearly, which is

a requirement of geostatistical techniques.  Second, the

effective permeability in sandstone/shale systems can be

calculated with the volume fraction of shale and the

constituent permeability values, provided that the

directional averaging exponents can be calibrated to the

geological setting.  The theory behind power law

averaging is revisited and new areas of application are

developed.

INTRODUCTION

Power law averaging was developed to upscale fine

scale realizations to coarse scale models for flow

simulation1,2,3; however, with increases in computing

power, upscaling is easily performed with quick flow

simulators instead of approximative scaling relations. We

will revisit power law averaging and describe possible

applications in modern reservoir characterization.
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Among other things, well log data provide a measure

of porosity and the volume fraction of shale.  The

porosity data can be used directly, but when permeability

measurements are sparse, permeability must be based on

the combined spatial characteristics of the shale and

sandstone.  The power law averaging method provides a

way to calculate directional permeability values that

account for the orientation of the shales. Figure 1 shows

schematically how the VSH log data can be transformed to

a range of horizontal and vertical permeabilities based on

different ω values in the power law transformation.

Another problem in modern geostatistics is the

integration of small-scale core-based permeability with

large-scale production data.  See Figure 2 for a schematic

illustration of the different scales at which data is

collected and how they are combined to create multiple

realizations at an intermediate scale. The problem is the

vast difference in scale and the highly non-linear

averaging of permeability. To further complicate this

situation, modelling is often performed at an intermediate

scale between the core and production data.  Gaussian

techniques require the data to be transformed to a

Gaussian distribution, but permeability does not average

linearly after Gaussian transformation; however, a power

law transform of permeability provides values that

average linearly and permits the data to be

simultaneously accounted for in modelling via a direct

simulation approach.

When unstructured grids are used the data must be

linear with scale and power law averaging provides a

means to do this.  Figure 3 shows an example of an

unstructured grid with cells that vary in size.  Modern

flow simulators are tending towards unstructured grids.

Power law transformation will permit direct modelling of

different volumes with block kriging.

This paper starts with a review of power law averaging

and why it is important.  We then explain how it is

implemented.  This is followed with a discussion of

implementation issues and examples.

BACKGROUND

The general formula for power law averaging of the

continuous variable K is written4:

ω
ω

1

)(
1









= ∫

v

eff dk
v

K uu ...............................................(1)

v is the volume over which the average is calculated, k(u)

is the permeability at location u within the volume, and ω

is an exponent of averaging.

The averaging for the categorical case is written:
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Where n is the number of classes, pi is the volume

fraction of class i, and Ki is the permeability of class i.

For a binary system of sandstone/shale, the power

average equation is written:

K V K V Keff SH SH SH SS= + −[ ]ω ω ω( )1
1

...........................................(3)

Where Ksh is the permeability of shale, Kss is the

permeability of sandstone and Vsh is the volume fraction

of shale.

The effective permeability, Keff, of a 3-D network of

blocks must take a value between the harmonic and

arithmetic average of the constituent permeabilities,

depending on their spatial arrangement.  The lower-

bound harmonic average can be seen as a power average

with ω = -1; this is representative of flowing through a

series of alternating permeability layers.  The upper-

bound arithmetic average can be seen as a power average

with ω  = +1; this represents parallel flow through

alternating permeability layers.  The geometric average is

obtained at the limit when ω  = 0 (see Appendix and

reference 5).

The problem of determining the effective permeability

can be transferred to the problem of determining the

constituent permeabilities and the averaging power.

Effective permeability is sensitive to the underlying

spatial structure of the permeability values and the

averaging process.  Consider a reservoir volume with

50% good quality reservoir rock at 100 mD and 50%
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poor quality rock at 0.01 mD.  The average permeability

can take any value between 0.02 mD and 50 mD,

depending on the spatial continuity of the different

permeability rock and the direction of flow.  The

calculated effective permeability can differ by many

orders of magnitude depending on the averaging process.

An incorrect assumption about the spatial structure could

lead to significant errors.

An important observation is that the averaging

exponents in the principal directions depend on the

spatial continuity and the geological setting but not on the

univariate histogram or the amount of good/poor quality

reservoir rock.  This observation makes power-law

averaging useful.

METHODOLOGY

Kriging-based geostatistical techniques require

variables that average linearly with scale.  Permeability in

its original units or after Gaussian transformation does

not average linearly.  This causes problems with data at

different scales and when using a different modeling

scale. This problem can be avoided by using a power law

transformation; the transformed values average linearly

with scale.

The challenge is to determine the direction-dependent

exponents, ωX, ωY and ωZ.  The ω values are between the

arithmetic and harmonic averages, or 1.0 and -1.0. The

exponents depend mostly on the spatial features in the

formation and not the histogram of the data.  When flow

is parallel to layering the effective permeability will be

closer to the arithmetic average of constituent

permeabilities.  The effective permeability perpendicular

to the layering will be closer to the harmonic average.  In

practice, ω  will be somewhere between these two

extreme cases.

A power law transformation does not change the basic

geostatistical modelling process.  A first step is to obtain

ω for the principal directions.  This is done by creating

multiple realizations of the geological model and solving

for the directional ω values. Alternatively, a collection of

models could be studied and used as template for

different geological situations. In this case the template

with the closest geological structure could be used for the

directional ω  values.  Once the ω  values have been

determined, the data of all types and volume supports can

be transformed into power law space: one transform per

direction.  After the transformation, the histogram and

variogram are determined.  These statistics and the

transformed data are then used for modelling using a

direct simulation technique8.

There may be a need to transform log-derived volume

fraction of shale Vsh data to directional permeability

values, see Figure 1.  Power-law averaging could be used

to provide a continuous estimate of the permeability in

the horizontal and vertical directions.  To start, ω values

need to be calculated by modelling or using a template.

These ω values are used to transform the Vsh data into

permeability by using the binary power law formula,

Equation 2.  There is uncertainty in the resulting effective

permeability values due to uncertainty in the power law

exponent; the log data do not directly measure

permeability. To account for this uncertainty, multiple ω

values, that cover the full distribution of possible ω

values, can be used in the transformation process.  This

will provide a distribution of possible K values at each

location.

CALIBRATION

The calibration process for a single geological model

is straightforward.  The numerical model of small scale

permeabilities is subjected to flow simulation with

specified boundary conditions to obtain the true effective

permeabilities: KX, KY, and KZ. Average permeability

values can also be calculated from the small scale

permeabilities for any ω.  This allows us to choose the

ωX, and ωY and ωZ.

To account for uncertainty and ergodic fluctuations in

the geological models we must repeat the calibration

process for multiple realizations of the same geological

model.  Once an assemblage of directional ω values have

been calculated, the resulting distributions can be

checked.  The mean value will provide a single estimate

for ω in a given direction, and the distribution will show

the uncertainty in ω for the geological model.
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The flowsim program1 can be used to solve for the

directional effective permeability values given a

geological model.  The ω  value is calculated in four

steps: (1) construct multiple permeability realizations

based on a specific geological model, (2) calculate the

effective KX, KY, and KZ values by flow simulations, (3)

calculate the directional ω  values based on the flow

simulation results and the original realizations, and (4)

plot a histogram of the resulting directional ω values.

IMPLEMENTATION ISSUES

An ω derived from a synthetic geological model will

have uncertainty.  Multiple realizations of the same

geological model provide one way to assess this

uncertainty.  The resulting distribution of directional ω

represents the range of possible ω values for that model.

For practical purposes the mean can be used for a single

best estimate and uncertainty can be estimated by using

upper and lower percentiles, say the 10th and 90th.

Alternatively we could use Monte Carlo simulation from

the ω distribution and the resulting uncertainty can then

be quantified.  This uncertainty can be carried through the

rest of the modelling process.

Models based on different geological structures could

be considered. For example, elliptical remnant shale and

shale created by overlapping fluvial sands. The results of

different geological models can be compared and

appropriate uncertainty transferred through subsequent

steps.

In calculating the effective permeability in a binary

situation, Equation 3, we require the permeabilities for

the constituent shale and sandstone.  The sandstone

permeability can be calculated from core plugs and a

distribution of different values could be considered;

however, the shale permeabilities are often more difficult

to obtain. Using the same Ksh values in the calibration

and calculation step minimizes the affect of this

uncertainty.

Another problem with binary systems is that once a

critical percentage of shale has been exceeded, all the

flow paths must go through shale. This causes a dramatic

change in the effective permeability since we can no

longer flow through sandstone.  In trying to work with a

histogram near this percolation threshold, about 80% in a

3 dimensional correlated model, care must be taken to

calibrate the model separately for shale fractions above

and below this threshold.

A final concern is that ω may not be constant over

every volume support.  Large changes in volume will

likely cause the ω  value to change.  This complicates

calibration.

EXAMPLES

Multiple sgsim  realizations9 were created for

anisotropy ratios ranging from 1:1 to 25:1.  A lognormal

distribution of permeability was considered.  These

realizations were flow simulated and the ω  values

calibrated.  Figure 4 shows the histograms for each

direction and anisotropy ratio.  As the anisotropy ratio

increases the direction perpendicular to the greatest

continuity will see a decrease in ω ; the 2 directions

parallel to the continuity will see an increase in ω. Figure

4 shows these results in a graphical format where the

black dots are the average for each distribution and the

red and blue lines represent one deviation above and

below.  The variance of ω is small, being the highest at

the low anisotropy ratio and decreasing as this ratio

increases. Note that a 2-D example with anisotropy ratio

of 1 should yield an ω of zero5, but in 3-D the ω will be

higher at about 0.2.

Next, ellipsoidal shale intrusions with in a sandstone

matrix were created, using ellipsim9. Two studies

were performed.  One study looked at the effects of

changing the anisotropy ratio and the other showed the

effects of changing the shale percentage.  51 realizations

of 125,000 1.0m blocks were created for each study.  The

histograms for the anisotropy study are shown in Figure

5. Once again, as the anisotropy ratio increases the ω

value decreases for flow perpendicular to continuity and

increases in the directions parallel to continuity.  Figure 6

shows the mean and variance as before, but in this case

the variance increases as the anisotropy ratio increases.

The percentage study showed only a small change in ω as

the percentage changed from 5% to 65% shale. The

histograms are seen in Figures 7 and 8 with the mean and

variance values shown in Figure 9.  These results show
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little variability in ω for each anisotropy ratio, but Figure

9 indicates that as the anisotropy ratio goes to infinity the

ω values approach a singe value. An upper limit of 65%

was used to avoid the percolation threshold.  These

studies show that the ω is mostly dependent on the spatial

parameters and not the histogram.

ellipsim is an object based modelling program that

randomly places 3-D ellipsoids in a host matrix.  The user

defines the size of the ellipsoids.  Different anisotropy

ratios are considered by varying the size of the radii of

the ellipsoids.

A final study looked at how ω  changes in a fluvial

setting using the fluvsim program10.  51 realizations

were created for 3 different scenarios.  A base case

scenario was chosen; see Figure 10.  A “thick” case was

used where the width was halved and the depth was

doubled; see Figure 11.  A “thin” case was also

considered where the width was doubled and the

thickness halved; see Figure 12.  Each figure shows the

histograms for ω and three vertical and horizontal cross

sections.  ω  is more variable in this setting than in

previous examples, especially perpendicular to the fluvial

channels.

The fluvsim program is an object based simulation

program that creates channel intrusions into a host rock.

The channel cross section is similar to a half ellipsoid,

but the shape will change as the channel meanders

through the rock.  The shape of the channels is based on

parameters such as thickness and width.  The program

creates realizations by starting with a model of floodplain

shale and then embedding channels with parameters

drawn from the distributions.  This process continues

until a target proportion of channels have been created.

A set of Vsh log data, Figure 13, was transformed to

effective permeabilities using the directional ω values

from the base fluvsim case.  The transformation was

performed in three directions using the mean, 10t h

percentile, and 90th percentile ω  values.  In the X

direction (across channel flow) the effective permeability

shows some variability depending on the value of ωX, see

Figure 14.  The thick black line shows the results for the

mean ωX value and the blue and red lines represent the

P 10 and P90 ωX values, respectively.  The Y direction

(parallel to channel flow) shows almost no variability

since ωY is very consistent in this direction; see Figure

15.  Finally, in the Z direction (vertically) ωZ has a large

degree of variability and this transfers to uncertainty in

the effective permeability in this direction, see Figure 16.

Another way to look at these results is to consider the

permeability ratios between the directions, see Figure 17.

The upper two left plots show KX/KY ratios (red) and

KX/KY ratios (blue) in arithmetic and log scales. The

lower left two plots show the same ratios with different

values for KSH.  The red, black, and blue lines represent

KSH values of 1.0, 0.001, and 0.000001 mD respectively.

The right four plots is the original V S H data for

comparison. To better understand how the permeability

ratios are affected by VSH, Figure 18 was created.  The top

plot looks at the KX/KY, in arithmetic units, versus VSH.

The points are from the example VSH data set and the

solid line is from a synthetic data set which was created

to cover the full range of VS H values.  The lower plot

looks at the KZ/KY, in logarithmic units, versus the VSH

percentage.

A final look at how the histogram affects ω was done

using different means and standard deviations values in

the lognormal transformation.  Figure 19 shows the

resulting directional ω distributions for a mean of 10 and

standard deviations of 1, 10, and 100.

CONCLUSIONS

Power law averaging has been around for many years

but recently it has found new applications in the

petroleum industry.  In dealing with volume dependent

variables that scale non-linearly, a power law

transformation can be used to transform the variables to

scale linearly. These variables can then be used for

modelling, independent of their volume support, by using

the direct sequential simulation formalism. The resulting

realizations are then back transformed to original units

for further post processing. Two examples were provided

where a power law transformation could be used to scale

data linearly, unstructured grids and modelling with data

at different scales.
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Power law can also be used to transform VSH log data

into effective permeability values. This is done by

obtaining ω values based on the geological setting of the

well and then transforming the VSH values based on

known sand and shale permeability values. Log data can

now be directly transformed into directionally dependent

permeability at the scale of the log data. A program is

provided that will perform this transformation.

When using power law averaging there are some

assumptions made in the calibration process that may

affect the ω  values. The quick flow simulator uses

arbitrary boundary conditions that may be too simple for

some reservoirs. In these cases there will be a larger

degree of uncertainty in the ω values. If the formation is

approaching the percolation threshold then ω will be very

dependent on the volume of shale in the formation. In this

situation two distributions will be created, one for above

and one for below the threshold, due to the drastic change

in ω as this threshold is crossed.

ω can also be very sensitive to some of the inputs for

its calculation. In particular, different geological setting

will have very different distributions of ω. In situations

where there is some question as to what the geological

setting is there will be a large degree of uncertainty in ω.

Overall, there are many applications in the petroleum

industry that could benefit by using power law averaging

in the modelling process. However, there are some

factors that can negatively effect this process, but, these

should be minimal in the presence of good decision

making and diligent modelling.
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APPENDIX: LIMIT OF POWER LAW AVERAGE
AT OMEGA=0

The arithmetic, geometric, and harmonic averages are

well known:
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where n  is the number of permeability values: ki,

i=1,…,n.  These averaging cases are generalized by

power-law averaging:
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where the exponent ω is 1 and -1 for the arithmetic and

harmonic averages.

The geometric average KG is obtained with ω = 0 at the

limit.  Let’s demonstrate.  Take the log of both sides of

Equation A.4 and pull ω out
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We now raise both sides by the Euler number (e).  This

cancels the natural log on the left hand side.
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So, the limit of the power law average as ω → 0 is the

geometric average.  As a practical matter, once ω  is

within some tolerance of zero we resort to the geometric

average, that is, exponentiating the arithmetic average of

the logarithms of the permeability.
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Figure 1: Power law averaging is used to transform log data into directional effective permeability values with some

uncertainty.

Figure 2: Integration data from different size scales can use power law averaging to create a linear relation with scale.

Figure 3: Power law averaging is used to linearly scale the data to any grid size when using unstructured grids.



9

Figure 4: The effects of changing the anisotropy ratio in sgsim: histograms of ωX, ωY, and ωZ.
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Figure 5: The effects of changing the anisotropy ratio in ellipsim: histograms of ωX, ωY, and ωZ.
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Figure 6: The effect of the anisotropy ratio on the ω using ellipsim. The top lines represent the X and Y directions and the

bottom lines represent the Z direction.

Figure 7: The effects of changing the sandstone percentage from 5% to 35% (10 to 1 ellipsoids).
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Figure 8: The effects of changing the sandstone percentage from 40% to 65% in ellipsim when using a base case

anisotropy ratio of 10 to 1.

Figure 9: The effect of the percentage of sandstone on the calculated ω using ellipsim.  The top lines represent the X and

Y directions and the bottom lines represent the Z direction.
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Figure 10: The 3 histograms for ωX, ωY, and ωZ. for the base case of fluvsim.

Figure 11: The 3 histograms for ωX, ωY, and ωZ. for the “thick” case of fluvsim.
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Figure 12: The 3 histograms for ωX, ωY, and ωZ. for the “thin” case of fluvsim.

Figure 13: Plot of VSH  log data with depth.
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Figure 14: Plot of the power law transformed VSH data to permeability (mD) in the X direction. The thick black line is the

mean of ω, the outer light lines correspond to the P10, blue, and P90, red, values for ω.

Figure 15: Plot of the power law transformed VSH data to permeability (mD) in the Y direction. The thick black line is the

mean of ω, the outer light lines correspond to the P10, blue, and P90, red, values for ω.
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Figure 16: Plot of the power law transformed VSH data to permeability (mD) in the Z direction. The thick black line is the

mean of ω, the outer light lines correspond to the P10, blue, and P90, red, values for ω.

Figure 17: The upper two plots show KX/KY ratios (red) and KZ/KY ratios (blue) in arithmetic and log scales. The last two

plots show the same ratios with different values for KSH. The red line is KSH = 1.0, the black line is KSH = 0.001, and the

blue line is KSH = 0.000001.
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Figure 18: The top graph shows how the KX/KY permeability ratio changes with VSH. The solid line is the theoretical

results, which is reproduced perfectly by the calculated values, shown in dots. The bottom graph shows the KZ/KY ratios on

a log scale. The theoretical lower limit is given by KSH/KSS.

Figure 19: The histograms of ω for lognormal transforms with a mean of 10 and standard deviations of 1, 10, and 100.




