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Inclined heterolithic stratification (IHS) sets are commonly encountered in the host rock 
of the Alberta oil sands.  Important features in petrophysical properties have been 
identified with respect to these sets.  Remnant shales constrained by the IHS geometries 
are of primary interest.  Trends in the shale fraction and grain size trends (e.g. fining 
upward, lateral and distal) are also present.  These geologic features may have a 
significant impact on the response to exploitation through steam assisted gravity 
drainage (SAGD). 
 
The IHS sets are derived from lateral accretion architectural elements within a fluvial 
depositional setting.  The bank retreat fluvial model is a simplified process based model 
of stream meander migration.  This model is parameterized by hydraulic parameters and 
initialized with realistic channel stream lines from the dampened harmonic model.  A 
realistic channel profile with correctly positioned thalweg may be fit to the migrating 
streamlines.  The migration of this channel results in the generation of realistic lateral 
accretion geometries.   
 
Multiple realizations of the IHS sets may be calculated with the bank retreat model.  The 
result is unconditional surface based IHS set geometry models.  Petrophysical properties 
may be fit to these models.  The resulting models may be applied as training images for 
multiple-point simulation and to assess the impact of IHS geometries and heterogeneities 
on reservoir response. 
 
Introduction 
 
Inclined heterolithic strata (IHS) are characterized as siliciclastic sequences that are 
parallel to subparallel with original dips (Thomas et. al., 1987).  These strata generally 
result from the lateral growth of large-scale bedforms such as point bars (lateral accretion 
elements).  The internal geometry is characterized by growth units with fining outward 
trends.  These units are separated by accretionary surfaces (Thomas et. al., 1987).  The 
external geometry is described by Miall (1996) as point bar lenses flanked by shale filled 
abandoned channels. 
 
IHS sets demonstrate a variety of characteristic trends and forms.  For example Thomas 
et. al. (1987) identified seven possible grain size fining trends associated with IHS 
deposits.  These grain size trends include fining upwards, fining distal and fining 
perpendicular to the IHS sets.  These trends may have a significant control of the porosity 
and permeability distribution of IHS set dominant sand bodies.   



 
Improved modeling of these deposits will be of economic consequence.  IHS sets are 
common in the MacMurray formation in Northern Alberta.  This formation illustrates the 
interaction of fluvial and estuary processes over a cycles of various time scales.  The 
estuary influence amplifies the fining trends and mud drapes along the accretionary 
surfaces with the addition of brackish to marine sediments in the IHS sets. 
 
These accretionary surfaces may provide valuable control for the construction of IHS 
property trend models and in the assessment of recovery factors.  Yet, the geometry of 
accretionary surfaces in IHS sets is complicated.  The geometry is the result of channel 
sinuosity, channel geometry and meander development and avulsion frequency. These 
IHS sets geometries have been discussed by authors such as Diaz-Molina (1993), Thomas 
and others (1987) and Willis (1993). 
 
An unconditional stochastic IHS sets geometry model is proposed to reproduce the 
complicated geometries of accretionary surfaces.  This model is relies on (1) the 
disturbed periodic meander models for the seeding of realistic channel streamlines, (2) 
the FLUVSIM channel geometry for a realistic meandering channel profile and (3) the 
bank retreat model for the realistic channel meander migration. 
 

Disturbed Periodic Meanders Models 
 
The disturbed periodic meanders model has been shown to produce realistic channel 
streamlines (Ferguson, 1976).  This model is based on a dampened harmonic model that 
is continuously disturbed.  
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where k is related to wavelength of the largest amplitude ( λπ /2=k ), 10 << h  is the 
dampening factor and )(sε is the disturbance value.  The physical analogy for this model 
is a pendulum dampened by air resistance and continuously hit by rocks.  This model 
may be applied as a discrete approximation and results in streamlines that are based on 
clear parameters and with statistical properties similar to natural streamlines.  Figure 1 
shows example streamlines calculated with the disturbed periodic model with sinuosity of 
1.1 to 1.8.  
 



 
Figure 1 – example streamlines calculated with the disturbed periodic model.  The sinuosity is 
labeled on the left side. 

Channel Geometry 
 
The channel geometry is based on FLUVSIM, a publicly available fluvial object based 
model (Deutsch and Tran, 2002).  This model is consistent with the channel profile 
expected in meandering streams (Easterbrook, 1969).  Channels are parameterized by a 
streamline, relative thalweg location, stochastic depth and a width to depth ratio.  The 
relative thalweg is calculated as a function of channel curvature.  The relative thalweg 
location is based on the following equation. 
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where )(ya is the relative thalweg, l

vC and r
vC are the maximum channel curvature in the 

clockwise and counter clockwise directions, and )(yCv  is the local curvature.  The 
channel cross section geometry is defined by Equation 3 for a thalweg closer to the left 
bank and Equation 4 for a thalweg closer to the right bank. 
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where )(ln(/)2ln()( yayb −= . 
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where )(1ln(/)2ln()( yayc −−= . 

 
),( ywd  is a function describing the channel cross section, )(yt is the local channel 

thickness, )(yW is the local channel width and w  and y  are the transverse and 
longitudinal coordinates.   An illustration of the channel profile is shown in Figure 2.   
 

 
Figure 2 – channel profile based on FLUVSIM. 

 
The channel parameters, location, thalweg and depth, are calculated at discrete locations 
along the streamline.  Cubic splines are fit to these properties to allow for a smooth 
transition along the channel length and interpolation at any channel position.  These cubic 
splines act as the backbone for the channel geometry (Wietzerbin and Mallet, 1993). 
 
The Bank Retreat Fluvial Model 
 
The bank retreat model is applied to predict the migration of meandering stream channels 
based on hydraulic and host material parameters.   This model has been proposed by 
Howard (1992) and applied to construct fluvial facies models by Sun et al. (1996).  Also, 
Lopez et al. (2001) applied the bank retreat model to construct fluvial reservoir models 
with proposed methods for honor areal and vertical trends. 
 
The algorithm proceeds in the following order (1) seed a channel, (2) discretized the 
channel with control nodes, (3) calculate the near bank velocity at the control nodes, (4) 
calculate the node migration as a function of the near bank velocity and host material 
erosion coefficient and (5) migrate the nodes in a direction normal to the channel. 
 
The equation for the near bank velocity is (Sun et al., 1996): 
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where sbu~  is the near bank velocity, b is the channel half width, 0su  is the stream mean 

velocity, C~  is the local channel curvature, fC  is the friction coefficient, g  is the 

gravitational constant, 0h is the average depth of channel, 'A  is a positive factor 
describing the scour factor and s is the coordinate along the channel.  The integration 
component accounts for the inertial effects on the near bank velocity.  
 
The channel migration is calculated with (Sun et al., 1996):    
 

sbuE~=ξ          (6) 
 
where ξ is the channel migration distance, E  is the local erosion coefficient and sbu~  is the 
near bank velocity calculated in Equation 5. 
 
Time steps are applied to model the channel migration.  As the channel migrates an 
underlying facies model is modified with the formation of channel, point bar and 
abandoned channel architectural elements.  The erosion coefficient grid is modified as a 
function of facies. 
 
Methodology 
 
The proposed methodology for constructing stochastic IHS set geometries is (1) apply the 
disturbed periodic model to generate a realistic seed channel, (2) fit the FLUVSIM 
channel geometry to the sinuous channel streamline, (3) apply a modified bank retreat 
model to model streamline meander migration and (4) continue migrating and avulsing 
channel streamlines until the target NTG is reached. 
 
The bank retreat model is modified with the addition of a uniform erodability coefficient.  
This uniform erodability coefficient is set during each time step such that the maximum 
streamline displacement is equivalent to a user supplied maximum thickness of the IHS 
couplet.   This provides the user with explicit control over the IHS thickness, but removes 
the feed back of facies on subsequent meander migration.   
 
The user supplies a probability of avulsion proximal of the model.  Prior to each meander 
step, there is a random draw to determine if avulsion occurs.  Avulsion is integrated into 
the model by coding the current channel as abandoned channel and generating a new 
channel streamline independent of the current streamline.  The avulsion probability 
controls the extent of the IHS sets and the frequency of abandoned channel fills.   
 
The model is constructed from the bottom up.  A simplified aggradation schedule is 
applied to improve control over the degree of amalgamation of the IHS complexes and 



the preserved thickness of the IHS sets. The number of levels and the elevation of each 
level are set by the user. The algorithm migrates and avulses channels until the NTG is 
reached for the current level and then advances up to the next level.  The channels within 
a level are all constant elevation and the elevation is constant within each channel.  It is 
assumed that the model is corrected for stratigraphic correlation.  
 
For each time step the bottom surface of the channel is stored in an array.  A post 
processing step is applied to apply erosion rules.   The model output is a surface based 
model of IHS geometry.   
 
An example IHS sets geometric model is shown in Figure 3.  This model is based on low 
sinuosity channels (mean sinuosity of 1.2) with an average channel width of 400 meters, 
accretionary surfaces with a maximum spacing of 20 meters and infrequent avulsions 
(0.02 probability of avulsion for each time step). 
 

 
Figure 3 – example stochastic IHS sets.  A, B, C – cross sections and D – plan view with all 
streamlines and cross sections plotted.   



Conclusions 
 
These IHS sets geometric models may be applied to construct property models.  There is 
a wide variety of anticipated applications for the IHS set training images.  (1) These 
training images may be applied to aid in the inference to input statistics for conventional 
semivariogram and multiple-point based geostatistical models (Strebelle, 2002).  (2) They 
may be utilized in comparative flow studies and for the calculation of recovery factors for 
reserves and to assess connectivity. (3) Multiple models with a variety of geometries may 
be calculated for scenario based uncertainty analysis.  In general these models will aid in 
quantifying the impact of IHS trends and mud drapes along accretionary surfaces on 
reservoir response. 
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