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Abstract 
 
This paper will review the current practice of kriging block models within geological 
domains for resources and reserves.  The problems of smoothing, conditional bias, 
and data values-independent error variance are well understood.  The promise of 
simulation to overcome these problems has not been fulfilled for a number of reasons 
including the requirement for more complete input parameters, a greater reliance on 
stationarity, more complex multivariate modeling, increased computer demands, and 
difficulty checking the reasonableness of the resulting models. 
 
Geostatistical simulation should not be used until these concerns are addressed.  
The specific procedures and implementation considerations to address these 
problems will be discussed with examples.  Declustering and debiasing are 
discussed for the input distribution.  Trend modeling and stepwise transformation are 
discussed for stationarity.  Cosimulation by various schemes is discussed for 
multivariate modeling.  The computer requirements for realistic 3 -D multiple rock type 
modeling is discussed.  Checking procedures are reviewed.  We see that the 
procedures are available to address the concerns regarding simulation, but they 
involve more technical input and professional time that required by kriging. 
 
The advantages of spending the additional time on simulation will be reviewed.  The 
promises of unbiased recoverable reserves and a measure of uncertainty at any 
scale are very attractive.  Now, senior technical staff and management must 
demonstrate the courage to explore geostatistical simulation in a controlled fashion. 
 
Introduction  
 
Geostatistical simulation is the next frontier of geostatistical ore resource/reserve 
estimation.  The basic simulation paradigm has existed for many years.  There is a 
widespread acceptance of the usefulness of the simulation approach to numerical 
modeling of variability and uncertainty.  Nevertheless, few ore reserve estimates are 
made on the basis of simulated realizations.  Mine planning and decision making is 
simpler with only one estimate per grid block; however, the slow adoption of 
simulation is for more important reasons than simplicity.  This review paper will 
address some important practical reasons why simulation should be undertaken with 
care.  Recommendations will be given and illustrated with a small dataset. 
 
Problems with Estimated Models  
 
Estimation refers to the calculation of a single predicted value at each location that 
minimizes some measure of error.  Kriging is a proven estimation technique that 
minimizes the expected error variance subject to constraints.  Ordinary kriging within 
rock types is a robust estimator that has been used for many reserve/resource 
estimates.  Despite the robustness of kriging and the many successful mining 
ventures based on kriging estimates, there are some well known concerns with 



estimated models: (1) unrealistic smoothing, particularly when the drillhole spacing is 
large, (2) conditional bias in local estimates and failure to account for the information 
effect, and (3) an incorrect, data values independent, measure of uncertainty. 
 
Regardless of the kriging plan, kriged estimates are smooth relative to the underlying 
mineralization.  Kriging assigns weights to local data and there is no ability to predict 
high and low areas away from the available data.  One significant problem with 
smoothing is the perception that professionals develop of the variability in the 
deposit.  Estimated models created by kriging appear more continuous than the true 
variability and there is a danger of unrealistic expectations with respect to selectivity.  
The second problem with smoothing is that the resource and reserve estimates can 
be biased.  More information, such as blasthole samples, at the time of mining can 
lead to better selectivity than predicted by kriging.  Dilution and lost ore due to 
underestimated variability can lead to reduced selectivity than predicted by kriging. 
 
Fig. 1 shows data that will be used to illustrate some points in this paper.  I commonly 
use this released data in training courses.  The data set consists of thickness, Au 
grade, Ag grade, Cu grade, and Zn grade.  Most of the figures will show thickness 
and gold grade; however, all variables will be considered in the multivariate 
simulation.  Fig. 1a shows the reference distribution of thickness based on a large 
number of data.  Fig. 1b shows the available data at the (pre)feasibility stage, Fig. 
1(c) shows the histogram of thickness.  The fitted omnidirectional semivariogram is 
shown on Fig. 2.  There were too few data for reliable variogram inference. 
 
Fig. 3 illustrates the first two problems with estimated models.  The kriged map (Fig. 
3a) does not reflect the variability shown by the reference data (compare with Fig 
1a).  The smoothness is illustrated by the histogram of the estimate (Fig. 3b) and the 
histogram of true block values and estimated block values (Fig. 3c).  Of course, the 
true block values are not accessible in practice, but more information is likely 
available at the time of mining leading to estimated values closer to the true values 
than currently estimated.  It is difficult to account for this in estimation.  One approach 
is to estimate the recoverable reserves using an analytical volume variance 
correction scheme of some kind and modify the kriging plan to reproduce the 
anticipated reserves.  This may corre ct the global resource bias, but the spatial 
distribution will be wrong.  There will be too much high grade near the high-grade 
drillholes and too much low grade near the low grade drillholes.  This conditional bias 
could lead to a serious bias in the economics if the mine plan unwittingly targets the 
high grades early in the mine plan.  The proportion of high grade may be correctly 
predicted, but it is not in the contiguous regions as predicted by kriging with a 
restrictive search. 
 
Fig. 4 illustrates the third problem with estimation by kriging: the incorrectness of 
local measures of errors.  Fig 4a shows the kriging variances that depend solely on 
the data configuration.  A cross plot of the local mean versus variance; note the 
strong dependence between them. 
 
Among different interpolation methods, Kriging has some unique mathematical 
properties.  Kriging estimates are the best linear unbiased estimates; they minimize a 
well-defined measure of error variance.  The covariance between kriging estimates 
and all data used in kriging matches the specified covariance model.  The covariance 
between the kriging estimates is also correct.  The kriging variance provides a 
measure of error in the estimates.  The kriging estimate and variance are the mean 
and variance of the local distribution of uncertainty in the case that the multivariate 
spatial distribution is Gaussian.  The idea of extending kriging to create simulated 
realizations has been proposed for more than twenty years. 



 
Fig. 1. Example data: (a) illustration of a reference distribution based on data and 
simulation, (b) available data, and (c) some basic statistics. 
 

 
Fig. 2. Omnidirectional thickness semivariogram and fitted model.  The limited 
number of drillholes led to unreliable directional semivariogram estimates. 
 

 
Fig. 3. Kriging 5m blocks: (a) map of the estimates, (b) histogram of the kriging 
estimates, and (c) histogram of the block values from the reference model. 
 

 
 
Fig. 4. (a) map of kriging standardized kriging variances, (b) plot of standard 
deviation versus local mean values. 
 



Promise of Simulation 
 
The central ideal of simulation is to correct the smoothing of kriging by drawing 
realizations of the multivariate spatial distribution of grades.  Multiple realizations 
provide a quantification of joint uncertainty over all locations simultaneously.  The first 
approach to simulation was based on unconditional simulation and a post-processing 
of the realizations to make them conditional to local data.  Sequential techniques 
have gained in popularity because they simulate in a one-step procedure. 
 
It is possible to interpret kriging in many ways: optimal interpolation under a 
geologically-based measure of distance, a projection onto the space of linear 
combinations of the data, and so on.  There is no explicit need to assume a particular 
multivariate distribution model.  The multivariate distribution here is the spatial 
distribution of the grades at all N locations taken simultaneously.  Simulation, 
however, requires explicit specification of a multivariate distribution.  Determination of 
a non-parametric multivariate distribution model is virtually impossible in real cases.  
Indicator methods permit non-parametric inference of the bivariate spatial distribution 
model; however, the trivariate and higher distributions are not controlled; thus, tend 
toward Gaussianity because of the central limit.  The average of simulated 
realizations tends to Gaussianity.  Most geostatistical simulation techniques 
transform the univariate distribution to a standard normal distribution, then assume a 
multivariate Gaussian distribution.  Sequential Gaussian simulation, turning bands, 
matrix methods including LU simulation, and spectral simulation techniques are all 
Gaussian.  There is little point in debating their pros and cons.  They all generate 
realizations with the same statistical properties.  These techniques are discussed in a 
number of textbooks and papers. 
 
Fig. 5 shows two realizations out of 200 that were created based on the data 
presented in figures 1 through 3.  Note that the variability is similar to that of the 
reference values (Fig 1a).  Simulation gives up uniqueness and local accuracy for a 
realistic model of variability and a model of uncertainty.  This uncertainty can be 
calculated over any spatial or temporal scale. 
 
Consider the top 300m of the vein and the possibility of mining 36-50m by 50m 
stopes starting from the lower left (bottom South) and moving northward and then 
upward.  A minimum mining thickness of 2m will be considered; unmineralized waste 
will be added if the thickness is less than 2m.  Fig 6. shows the mining sequence and 
the relationship between the gold grade and the thickness.  The gold grades were 
cosimulated using thickness.  Some more comments on this are given below.  
Multiple realizations are passed through the simplistic mine plan.  The results are 
shown on Figure 7.  The kriged thickness (red line) and simulated thickness values 
for 100 realizations are shown.  The histogram of the tonnage for 100 realizations is 
shown at the right.  The black dot corresponds to the value from the kriged model.  
Note how there is a bias because the thickness cutoff was below cutoff and the 
kriging smooths more values to be above cutoff. 
 
The promises (and place) of simulation are (1) numerical models of mineral deposits 
that more closely reflect the true expected variability of the mineralization, (2) a 
measure of variability and uncertainty at any spatial or temporal scale, and (3) an 
opportunity to transfer the variability and uncertainty through optimal decision making 
regarding blending, mine planning, economics and classification.  These promises 
have been known for some time.  A number of practical problems have slowed the 
adoption of simulation for these problems.  The remainder of this paper will cover 
some of the essential implementation details that must be considered for the 
promises of simulation to be fulfilled. 



 
 

 
 
Fig. 5. (a) two simulated realizations accounting for the vertical trend, and (b) the 
histogram of block values based on the simulated realizations. 
 
 
 

         
 
Fig. 6. (a) example mining sequence for the top 300m, and (b) scatterplot of gold 
grade versus thickness (in Gaussian units). 
 
 
 

 
Fig. 7. Kriged thickness (red line) and simulated thickness values for 100 
realizations.  The zero thickness values correspond to situations where the stope 
does not meet the cutoff grade.  The histogram of the tonnage for 100 realizations is 
shown at the right.  The  black dot corresponds to the value from the kriged model. 
 
 
 



Trend Model 
 
The spatial variability of mineral deposits is partly structured and partly random.  For 
this reason, ordinary kriging (OK) is the most popular flavor of kriging.  The kriging 
weights are constrained to sum to one, which amounts to estimate the mean locally 
instead of assuming a known and stationary mean.  Provided there is enough data, 
the estimates of OK adapt well to low- and high -grade areas.  The OK variance is not 
a good measure of local error since the variance depends the magnitude of the 
grades.  It is problematic to implement OK or an equivalent approach in simulation.  
The estimates and the variance must account for low- and high- grade regions.  The 
multivariate Gaussian distribution has strong assumptions of homoscedasticity, that 
is, the variance is independent of the grades.  Ad -hoc solutions around this 
assumption inevitably lead to biased predictions and other problems.  There is a 
need to (1) model the trend in a reliable manner, and (2) remove this trend prior to 
Gaussian simulation. 
 
Modeling geological rock types mitigates the problems associated with trends.  Often, 
the grades are more homogeneous within rock types.  Rock types or geological units 
must be modeled prior to grade modeling.  The focus of this paper is on the 
geostatistical simulation of continuous variables within pre-defined rock types.  
Despite the modeling of rock types, there are often trends within individual rock 
types. 
 
An initial OK run or hand contouring can detect large-scale spatial features.  
Sometimes a simple cross plot of the grades versus direction may show a trend. To 
visualize trends, a moving window average of the data can be calculated to 
determine if local means and/or variances are indeed stationary. The size of these 
windows will depend on the number of data available.  Notable changes in the local 
mean and variance within the domain lead to trend modeling.  Although the 
identification of a trend is subjective, it is widely accepted that the trend is essentially 
deterministic and should not have short scale variability.  Any feature that is not 
significantly larger than the data spacing should probably be left for stochastic 
modeling. 
 
The mean component is defined at all locations via a 3D trend model, while the 
residual values are only defined at data locations. Geostatistical modeling is then 
only performed on the residuals that are considered to be stationary.  Multiple 
realizations of the residuals are generated and added back to the single trend model 
to produce multiple realizations of the original RV. 
 
The problem remains as to how the trend should be modeled so as to obtain a 
stationary residual random function (RF) for geostatistics.  The idea is to obtain a 
model that accounts for large-scale features.  There are several trend modeling 
approaches that have gained popularity in practice: (1) hand contouring of geologic 
sections accounting for drill hole data and geological interpretation, (2) simple moving 
average or inverse distance estimates, or (3) OK of blocks with a variogram with 
some nugget effect.  The grade within a geological unit with a trend can be 
decomposed into a mean and residual: z(u ) = m(u)+r(u), where the deterministic 
trend is m(u) and the residual value r(u) is to be modeled geostatistically. 
 
The r(u) values must be modeled accounting for the grid of m(u ) values since these 
two intermediary variables are related together.  The figure below shows the residual 
versus trend for a particular geological unit of a porphyry copper deposit in Canada.  
Note the “forbidden triangle” in the lower left – any residual in this area would lead to 
a negative grade, that is, r(u)<m(u ) implies negative z(u).  The relatively small 



correlation between r(u) and m(u ) may not be important, but the constraint for 
negative grades and the dependence of the variability in r(u )/z(u ) on trend m(u) is 
important.  Stepwise conditional transformation (SCT) will be proposed below in the 
Multivariate Simulation section as a simple and effective approach to account for this 
relationship. 

 
 
Fig. 8. Scatterplot of the residual after trend modeling versus the trend.  Note the 
non-negative constraint expressed as a line with a slope of -1. 
 
Declustering and Debiasing 
 
Simple kriging requires the specification of a mean value, but in general Kriging does 
not require an input histogram.  All simulation techniques, however, require 
specification of a global distribution that will be reproduced with statistical 
fluctuations.  This global distribution is often used to transform the grades to a 
Gaussian distribution.  Reproduction of the standard Gaussian distribution by most 
simulation techniques ensures that the specified distribution will be reproduced.  
Taking the equal weighted distribution of the data within the rock type as the 
representative distribution is usually a bad idea.  Drillholes are rarely uniformly 
spaced and there is often a spatial sampling bias toward high grades (or perhaps low 
grades).  Declustering and debiasing techniques must be considered to arrive at a 
representative distribution. 
 
The representative distribution is partially addressed when a trend has been 
modeled.  The only constraint then is that the residual distribution be representative, 
but the overall mean will be corrected through the trend model.  Declustering and 
debiasing is particularly important when the trend has not been modeled. 
 
Multivariate Simulation 
 
Virtually all geostatistical simulation is done in a multivariate setting.  Even with a 
single grade, there is often a trend, which makes it a multivariate problem.  The 
stepwise conditional transformation technique is a multivariate Gaussian 
transformation, that is, multiple variables are simultaneously transformed to 
independent Gaussian variables that can be simulated independently.  The values 
are back transformed to reintroduce the multivariate relationships that are removed in 
the forward transformation. 
 
This technique, first introduced by Rosenblatt in 1952, is equivalent to the normal 
score transform in the case of one variable.  In a bivariate case, the normal 
transformation of the second variable is conditional to the probability class of the first 
variable.  Correspondingly, for k-variate problems, the kth variable is conditionally 
transformed based on the (k-1) first variables: 



Y1 = G-1[F1
-1(Z1)] 

Y2 = G-1[F 2|1
- 1(Z2|Z1)] 

•  •  • 
YK = G-1[FK|1,…K- 1

- 1(ZK| Z1, Z2,… Z K-1)] 
 
G-1(•) is the inverse of the standard normal distribution function.  The conventional 
normal scores transformation is performed on conditional distributions with increasing 
levels of conditioning.  The number of required data increases significantly, but we 
commonly consider sets of 2 or 3 variables at a time.  Fig N. shows the steps to 
accomplish this conditional transformation in the case where the first variable is the 
mean/trend and the second variable is the variable.  Once the data are binned based 
on their conditional probabilities, each group of data is normally transformed.  
Simulation is then performed on the normal score values of the Yi's and back 
transformation is performed. For example, Z1 can be determined from Y1 with the 
correct conditional distribution; from Z1 and the simulated value of Y2,  Z2 can be 
calculated; and so forth. 
 
Fig. 9 illustrates the transformation with the notion of transforming the residual from 
the trend using the trend as the primary variable.  This transformation is very 
effective at removing correlation between variables, permitting independent 
simulation, and the reinjecting the correlation in the back transformation. 
 
Some Common Issues with Simulation 
 
Block kriging accounts for the volume scale between the data and the volume being 
estimated.  In practice, block kriging is of little value since the smoothing of the 
kriging estimates is more important than estimation of blocks and not points.  In 
simulation, however, it is not possible to directly simulated block values.  The kriging 
within the simulation could easily be modified to account for blocks, but there would 
be an implicit assumption of linear averaging after normal-score transformation.  This 
would lead to a bias in the simulated values.  Standard practice is to simulate points 
and then average them up to the scale of interest.  Simulating 9 or more point values 
per SMU block leads to reasonably stable results.  Some practitioners prefer even 
more stable results such as 20 or so points per block. 
 
Another issue with simulation is the quantification of uncertainty at a very large scale, 
for example, the deposit scale.  Simply running multiple realizations does not lead to 
a reliable measure of uncertainty at a large scale.  Areas of low- and high-grades 
tend to average out and all realizations lead to similar resource/reserve estimates.  
Uncertainty is systematically underestimated unless the input statistics are 
considered uncertain (through the use of a spatial bootstrap) and alternative 
scenarios are considered. 
 
Mine planning is awkward with multiple realizations.  The full engineering design 
could be considered on a few different models, but it is unlikely that pit smoothing, 
scheduling and detailed analysis could be considered on a 100 realizations.  It is 
common to rank the realizations and target realizations such as the P10, P 50, and P90 
ones for detailed analysis.  Ranking  requires specification of a scalar number for 
ranking.  Our first intuition would be to use quantity of metal for each realization.  
Interestingly, realizations with the same quantity of metal could be quite different.  A 
realization with relatively few tones and high grade could be equivalent to a 
realization with more tones, but lower grade.  By chance, the realizations ranked on 
quantity of metal can be quite unstable. 
 



 
Fig. 9. Normal score transform of residuals conditioned to trend component: (a) 
partition residuals into classes based on its trend component, (b) normal score 
transform each residual class, and (c) assemble all transformed residuals (from all 
classes) and plot against the trend to show bivariate distribution with 
homoscedasticity and approximately zero correlation.  Note that the marginal 
distribution of YR(u) is Gaussian. 
 
 
Checking 
 
Estimation models are easier to visually check than geostatistical simulation; all 
features on a map of kriging estimates are either justified by the available data or are 
erroneous.  Simulated realizations present stochastic features that have to appear 
correct on each realization and appear correct in expected value over multiple 
realizations.  This requires more extensive checking than estimation.  Also, 
simulation is more sensitive to the input statistics and departures from stationarity.  
Most problems translate to a bias in the final histogram, which leads to a direct bias 
in the predicted resources/reserves. 



 
There are some very basic checks that shou ld be performed on all simulated 
realizations.  All numerical simulations should honor the input information including 
the geological interpretation, the data values at their locations, the data distribution, 
and the correlation structure, within acceptable statistical fluctuations.  Moreover, the 
uncertainty measured by the differences between simulated realizations should be a 
reasonable measure of uncertainty.  Confirming that the realizations reproduce the 
input statistics does not necessarily imply that the model is geologically realistic or 
good for production forecasting.  These are minimum criteria that must be met. 
These checks should be an integral part of any geostatistical simulation modeling 
workflow.  Fig. 10 below shows a standard display where the reference input statistic 
is shown in red, the result of all realizations combined is shown in blue, and 10 
realizations are shown as gray lines.  The variogram model is not reproduced in this 
case because the variogram was calculated on the realizations after they were back 
transformed to original units. 
 

     
Fig. 10. Example checks of histogram and variogram reproduction.  Although difficult 
to see, the probability plots for 10 realizations are shown as gray lines, all of the 
realizations are shown as blue, and the reference distribution is shown in red.  The 
variogram reproduction is not particularly good. 
 
 
As simple as this sounds, the first check should be a visualization of the realizations 
(in 3-D if possible).  This visualization should highlight low and high valued areas. 
The project geologist should be satisfied with the variability of the high and low 
values and their overall distribution.  The variability or uncertainty should be 
reasonable and plausible, for example, there should be no high values in clearly low 
areas and vice versa.  Comparisons against simple geologic contours of trends, 
generated by methods such as hand contouring, inverse distance and other common 
estimation techniques, would also provide a level of comfort and confidence in the 
simulation models.  The geologist should be neither intimidated by the geostatistical 
procedures nor swayed into accepting any strange results. 
 
Once the realizations are deemed geologically plausible, common validation tools, 
such as cross validation and the jackknife, could be used. The basic idea is to 
estimate an attribute at a location where the true value is known.  In cross validation, 
a data value is removed and the location is estimated using all other neighbouring 
data. Conversely, the jackknife refers to resampling without replacement. As a result, 
cross validation is commonly known as the leave one out approach, and the jackknife 
approach is known as the keep some back  approach.  The kriging methodology 
underlying the simulation algo rithm should be checked.  Cross validation in 
estimation mode should yield (a) a cross plot of the estimate versus the true value 
with a high correlation coefficient, (b) a distribution of errors that is symmetric with a 



mean of zero and a low variance, and (c) a cross plot of the error versus the estimate 
should be centered about zero error, that is, conditionally unbiased estimates. 
 
Cross validation in simulation mode is more difficult.  Each realization should appear 
visually reasonable, but the additio nal variability of the simulation leads to less 
precise prediction.  A reasonably large number of realizations (L>50) can be 
averaged and checked against a basic kriging model.  There is no need that the 
average of multiple realizations be exactly kriging (that would only be true in the 
space of Gaussian transforms), but they should be reasonably close (0.9 correlation 
or higher).  The distributions of uncertainty can also be checked for accuracy, that is, 
80% of the true values should be within the P10 and P90 values of each distribution.  
The actual fraction of true values in different probability intervals can be checked with 
simulation. 
 
Conclusions 
 
Estimation has suffered longstanding concerns related to smoothing and potential 
bias in recoverable reserves.  The promise of simulation to overcome these concerns 
is becoming a reality.  This paper has focused primarily on a number of 
implementation concerns that must be addressed.  The implementation and checking 
of simulation is much more difficult than conventional kriging, but the advantages of a 
realistic model of heterogeneity and uncertainty at any scale are compelling reasons 
to consider simulation. 
 
Mineralization is partly structured and partly stochastic.  Careful trend modeling is 
required for the structured aspect of the variability.  Simulation of the residual is 
required for the stochastic component.  Stepwise conditional transformation is useful 
to overcome the unavoidable relationship between the trend and residual.  The same 
transformation can be used to simplify multivariate simulation of multiple grade 
values. 
 
Checking the reproduction of input data, the deemed-representative histogram, and 
the specified variograms ensures consistency of the geostatistical realizations.  
Validation with actual production data is desirable.  Overall, the average of the 
realizations should match the produced tones, grade, and metal.  Moreover, the 
probabilities should be fair, for example, the produced values should be within the P10 
and P90 80% of the time. 
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