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Abstract 
 
There are very few instances in nature where hard geological boundaries exist.  In most 
cases, the geological mechanisms that generate a deposit are transitional in nature.  
Some degree of overlap between geological units can be expected; however, conventional 
grade estimation usually treats the boundaries between geological units as hard 
boundaries. This is primarily due to the limitations of current estimation and simulation 
procedures. The sharing of grade samples across a boundary often has the effect of 
corrupting the representative statistics of the region of interest, particularly for simulation. 
 
We propose to use a linear model of coregionalization (LMC) to simulate grades using 
data from adjacent rock types.  Although the LMC is traditionally used to characterize the 
spatial variability of multiple properties in one rock type, we will show that it can be applied 
to model the spatial variability of one property across the boundary between multiple rock 
types.  Specifically, the cross covariance between two different non-collocated data sets is 
calculated and the short-scale behavior is extrapolated.  This allows inference of the 
nugget effect of the cross covariance from the nugget effects of the direct covariances.  A 
full model of coregionalization can then be constructed.  This model allows the correlation 
of the grades across the boundaries to be captured through a legitimate spatial model of 
coregionalization, which can then be used to cokrige or cosimulate grades using data from 
adjacent rock types.  This approach guarantees the correct reproduction of representative 
statistics of the individual geological units used for resource estimation.  
 
This proposed methodology is applied to a synthetic deposit, and compared to the 
conventional approach of modeling using hard boundaries.  It provides an appealing 
alternative to capture grade distribution for deposits where complex contacts between 
different rock types exist.  Further, it will improve the resource estimation by reducing the 
uncertainty in transitional zones around boundaries. 
 
 
Introduction 
 
Mineral resource and ore reserve estimation requires a critical decision regarding the 
geological domains that will be used for the grade modeling, as well as the type of 
boundaries between these domains. The most common geostatistical techniques, such as 
kriging and sequential simulation, are based on strong assumptions of stationarity of the 
estimation domains. The statistical characteristics of one domain can have a very different 
impact than another domain in the final mineral inventory. Therefore, these domains 
should be chosen as statistically homogeneous zones, which are geologically significant 
and coherent, but still holds enough data to allow reliable inference of first and second 



order statistics. The domains should also be defined on a scale significantly larger than the 
selective mining unit (SMU). 
 
Wherever possible, geology should be used to define appropriate estimation domains. 
Some deposits will have a very simple geometry and mineralisation pattern, making the 
choice of estimation domains straight forward from geological units. In other cases the 
mineralisation of interest is not entirely defined by a single geological unit or may 
transgress their boundaries. In these deposits, it is common to find an important structural 
or lithological influence on grade distribution and/or multiple events of mineralisation. In 
these cases, a combination of different geological attributes may reflect an estimation 
domain. When it is not possible to identify and isolate the geological controls of grade 
distribution, the estimation domains can defined purely by grade boundaries; however, this 
method is considerably more dangerous in that under or overestimation of grade and 
tonnage can result. 
 
Once certain geological or grade boundaries are selected to represent an estimation 
boundary, the choice should be validated statistically. Differences in the mean, variance 
and spatial variability between domains are common. A probability plot or a high coefficient 
of variation may indicate that the chosen domain still has mixed populations. Indicator 
variograms can be used to test for consistency in anisotropy and grade continuity of 
different grade ranges within a proposed domain (Guibal, 2001). An analysis on how 
grades change along a specific domain boundary is quite useful to validate a proposed 
boundary and determine the nature of the domain boundary. Also used to validate the 
choice of geological domains are several data analysis techniques, including cluster 
analysis, principal component analysis, discriminant analysis, characteristic (Botbol, 1971) 
analysis.  Care must be taken when using these techniques since none of these considers 
spatial correlation component, which is critical in a geostatistical study. 
 
 
Modelling grades given a boundary 
 
Domain boundaries are often referred to as either ‘hard’ or ‘soft’. Hard boundaries do not 
permit the interpolation or extrapolation of grades across domains. Soft domain 
boundaries allow grades from either side of a boundary to be used in the estimation of 
each domain.  
 
For deposits with hard domain boundaries, such as coal seams or sedimentary zinc 
deposits, the definition of domain boundaries is relatively straightforward. For deposits with 
soft domain boundaries, such as some porphyry Cu-Au deposits where the disseminated 
mineralisation has a gradational nature, boundaries separating ore from waste and from 
one zone to another may be diffused or transitional.  
 
Once the estimation domains are established, either deterministically or stochastically, if 
the boundaries of the domain are considered to be ‘hard’, the estimation of the domain is 
straightforward, using only the samples within the domain, since no interpolation across 
domains is allowed. If any of the boundaries of a domain are considered to be ‘soft’, then 
the common practice is to share samples (from the conditioning data and/or from 
previously simulated nodes) within a given extent of influence of one domain over the 
other. The ‘outside’ samples are treated equal to those within the domain, that is, the same 
mean, variance and covariance model from the samples within the domain are assumed.  
This generally has the effect of corrupting the representative statistics of the domain of 



interest. This corruption of the final grades, especially in the transition zones, often 
dissuades practitioners from handling these boundaries as soft boundaries and the result 
is that the boundaries are left as ‘hard’ boundaries. Nevertheless, the nature of the 
geological processes of mineralisation generates some degree of overlapping between 
units, and ‘soft’ boundaries are probably far more common than ‘hard’ boundaries. Even 
so, when the domains are defined purely by grade, it is highly recommended to use at 
least a one-way soft boundary to account for possible dilution; data within the high-grade 
domain is not used to estimate an adjacent low-grade domain, but for the estimation of the 
high-grade domain, data from the low-grade domain is used (Glacken and Snowden, 
2001). 
 
We propose to use a linear model of coregionalization (LMC) to simulate grades using 
data from adjacent domains.  Although the LMC is traditionally used to characterize the 
spatial variability of multiple properties or metal grades in one domain, we will show that it 
can be applied to model the spatial variability of one property across the boundary 
between multiple domains.  A full model of coregionalization allows us to capture the 
spatial correlation of grades across the boundaries through a legitimate spatial model, that 
can later be used to cokrige or cosimulate grades using data from adjacent domains.  This 
approach guarantees the correct reproduction of representative statistics of each 
geological domain. 
 
 
Theoretical Background 
 
Consider that the outcomes of our variable of interest (e.g. metal grade) in any of K 
geological domains correspond to the random variable Zk, with k=1,…,K, and each of them 
is second order stationary within its domain. Zk can be considered as linear combinations 
of n independent random variables Yi which follows normal distributions with mean mi and 
standard deviation σi, with i=1,…n. 
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The covariance of Zk at a vectorial distance h, can also be calculated as an expression of 
the coefficients ai and the covariances of Yi for i=1,…n: 
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Similarly, the cross-covariance of Zk and Zm, ∀k≠m, with k,m=1,…,K can also be derived 
as an expression of the coefficients ai for Zk, and bj for Zm, i,j=1,…n, 
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But since Yi is independent of Yj there is no cross spatial correlation between Yi(u) and 
Yj(u+h),i.e., { } { } { }( ) ( ) ( ) ( ) ,   i j i jE u u h E u E u h i j⋅ + = ⋅ + ∀ ≠Y Y Y Y . 
 

{ } { } { }
1 1

1

( ) ( ) ( ) ( ) ( )

                   ( )

k m

i

n n

i i i i i i i i
i i
n

i i
i

Cov a b E a b E E

a b Cov

= =

=

= ⋅ + − ⋅ +

=

∑ ∑

∑

Z Z

Y

h Y u Y u h Y u Y u h

h
 

 
To illustrate the concept above, lets consider a 2D example with only two domains, Z1 and 
Z2, constructed using the following underlying non-standard normal random variables: 
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Y3 ~ N(1.0,0.5) with max 400
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With the following coefficients ai and bi: 
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The theoretically derived cross-covariance between Z1 and Z2 was checked against 10 
different realizations obtained from unconditional simulations of Y1, Y2 and Y3. Three 
different spatial arrangement for Z1 and Z2 were considered: (1) collocated (just as a 
check), (2) the two domains adjacent to each other (Fig. 1A), and (3) the two domains 
merged (Fig. 1B) using a categorical binary model obtained via a Boolean simulation 
program, ellipsim, that generate a 2D map of ellipsoids of variable size and 
anisotropies for a given target proportion (Deutsch and Journel, 1998). 
 



 
Fig. 1: Example of two domains: (A) the domains are side by side, Z1 correspond to the right-half 
and Z2 to the left-half, (B) the two domains are merged using a categorical binary model. Z1 shows 
anisotropy along the X-axis, which have on average lower values than Z2, which shows anisotropy 
along the Y-axis. 
 
 
The cross-covariance between Z1 and Z2 when both variables are collocated match almost 
exactly, as shown in figure 2 the average variogram over all realizations is very close to 
the analytical model.  This is expected given that the analytical model was derived from 
the covariance models of Y1, Y2 and Y3, and the corresponding coefficients. The ergodic 
fluctuations associated with the different realization show a very low dispersion. 
 
 

 
 
Fig. 2: Cross-covariance reproduction of the simulated random variables Z1 and Z2, assuming both 
variables are collocated. The dots are the average taken over all realizations; individual realizations 
in dashed lines; and the thin red solid line correspond to the analytical model. The analytical model 
is very close to the average over all realization, which can make difficult to differentiate the dots 
from the solid line. 
 
 
In the case where the two domains are side by side, the simulated values corresponding to 
the average overall realizations, follow the analytical model fairly well (Fig. 3A), although 
configurations where the boundary is parallel to the major anisotropy of one of the 
domains (Z2 in this case), showed a systematically lower covariance at shorter lag 
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distances than the theoretical model, and greater ergodic fluctuations at lag distances near 
zero.  This latter observation means that inference of the nugget effect of the cross 
covariance is more uncertain in geometrical configurations similar to this one. 
 
For the second scheme, using a circular shape with radius of 150 meters and three target 
proportions of Z1 (25, 50 and 75%), the cross covariance between the experimental points 
derived from the average over all realizations compares well with the analytical model (Fig. 
3B). Contrary to the side-by-side scheme, the fluctuations at short lag distances have a 
smaller range of variation, and a wider range of variation at distances beyond the range of 
correlation. Therefore we can expect that when more contact surfaces between domains 
are available and are more irregularly oriented, the determination of the nugget effect 
should have less uncertainty, compared to the case where a single contact surface existed 
between two domains, especially if it is oriented parallel to the direction of major 
anisotropy of the values of one of the domains. A completely straight or planar boundary 
gives the least possible surface area to the boundary.  This leads to the smallest possible 
transition zone between rock types and the fewest possible pairs for variogram calculation. 
This was also confirmed by a poorer reproduction at shorter lag distances, with lower 
covariances than the analytical model, when the target proportion of the domain Z1 was 
lower than 10%.  
 
 

 
 
Fig. 3: (A) Cross-covariance between Z1 and Z2 combined side by side. (B) Cross-covariance 
between Z1 and Z2 combined using ellipsim categorical model as a boundary model with a target 
proportion of Z1 of 50%. The dots are the average taken over all realizations; individual realizations 
in dashed lines; and the thin solid line correspond to the analytical model. 
 
 
Using the same synthetic examples, the impact of different drill hole data spacing was 
examined. Overall the reproduction of the cross covariance analytical model is fairly good, 
although a wider range of fluctuation between realizations is observed. If the grid or data 
spacing is larger than the range of the cross-covariance between data from the two 
domains, the calculation of a cross-covariance will be meaningless. Also the grid spacing 
will be critical if there are insufficient pairs to infer a model. 
 
 

     



Application 
 
A synthetic example was created in order to use a full LMC cosimulation and compare it 
with the results obtained from simulating two adjacent rock types independently.  The LMC 
model was obtained by calculating the cross variograms between values of the different 
domains and the direct variograms within each rock type. 
 
Using a similar scheme as the previous example, the linear combination of three 
underlying random variables were used to populate a synthetic geological model; this will 
be consider as the ‘true’ image for comparison. The 2D reference image (2000 by 1000 
meters, with a 10 meters grid spacing in both directions) was sampled at a spacing of 70 
meters in the X-direction yielding a total of 2800 samples. 
 
Variograms were calculated from the normal scores transform values from each rock type, 
RT1 and RT2. Cross variograms can not be calculated if the variables are not collocated, 
which is the case here since we are trying to characterize the spatial variability across the 
boundary between RT1 and RT2. An alternative (Wawruch et. al. 2003) is to calculate the 
cross covariance between the variables by (1) extrapolating the experimental points at 
lags near to zero to obtain the structured cross covariance ( BZ1-Z2 ) (Fig. 4), (2) determining 
the relative nugget effects Z1 and Z2, and (3) calculating the sill of the cross variogram 
between Z1 and Z2 as: 
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In this example, the relative nugget effects obtained from the direct variograms of each 
rock type were both 0.1, the structured cross covariance was chosen at 0.4, so the sill of 
the cross variogram is 0.44. With this value the experimental points from the cross 
covariance can be inverted to obtain the cross variogram between Z1 and Z2. Although the 
nugget effect between the grade at each side of the boundary is not needed in any 
calculations because there is no collocated data nor we estimate collocated grid blocks; 
most cokriging and cosimulation programs require the LMC to be defined with variogram 
models, which requires the nugget effect and the sill of the cross variogram. 
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Fig. 4: Sketch with the structured cross covariance and calculated sill of a cross variogram given an 
experimental cross covariance between two non-collocated variables. 



The direct and cross variograms of Z1 and Z2 were model using a linear model of 
coregionalization (LMC) obtained by a semi-automatic variogram fitting program (Larrondo 
et. al., 2003). Since independent simulations of Z1 and Z2 were also performed, the direct 
variograms of each variable were modeled independently. 
 
The cosimulation was performed using the full LMC cokriging option of the ultimate 
sgsim program (Deutsch and Zanon, 2002); in this case each rock type was simulated 
using the samples of the other rock type, as a secondary variable. For the comparative 
case, sequential gaussian simulation was used to simulate each rock type independently 
as the contact between RT1 and RT2 was a ‘hard’ boundary. 
 
The reproduction of the direct variograms, both for the cosimulation or independent 
simulation schemes, was fairly good. Although the reproduction of the cross variogram 
was poor compared with the analytical model, the first 100 meters (total range) in the X-
direction showed a similar amount of correlation (Fig. 5). The case where the contact 
between RT1 and RT2 was assumed to be a ‘hard’ boundary, resulted in almost no 
correlation for lags less than the range of the cross variogram, even though the reference 
map was correlated between boundaries by construction. While for a ‘soft’ boundary 
assumption, the correlation for shorter lag distances of the average over all realization is 
closer to the correlation shown by the ‘truth’ reference.  
 
 

 
 
Fig. 5: Cross covariance reproduction for Z1 and Z2, cosimulated (right) and independently 
simulated (left). In a ‘soft’ boundary scheme (right) the correlation between the simulated values is 
very close to the ‘truth’ reference. In the contrary, in a ‘hard” boundary assumption, the correlation 
at short lag distances is significantly lower. The dots represent the average of simulated values over 
ten realizations, the dash line correspond to the cross covariance calculated for the training image, 
and the solid line is the analytical model derived from the theoretical expression. 
 
 
Cross validation of the model obtained by independently simulating Z1 and Z2 showed that, 
given the parameters used, the model is accurate and precise (Deutsch 2002). The 
cosimulated model is also accurate, and equally precise for RT1, while for RT2 is slightly 
less precise than the model obtained from independent simulations. This is not surprising 
since the fitted LMC model for this rock type did not fit the data as well as for RT1, but this 
is a common disadvantage when using a linear model of coregionalization instead of 
independent spatial model.  The cosimulated model did, however, show less smoothing 
(Fig. 6) and a lower standard deviation of the error (true-estimated) than the independent 



simulation scheme (0.5 versus 0.85 on average between the two rock types).  This 
translates to less conditional bias in the estimation. 
 
 

 
 
Fig. 6: Cross validation of data values in RT1 and RT2, estimate independently (left) versus 
cosimulated (right). The cokriging cross validation show far less conditional bias than the estimation 
of each rock type independently, especially for RT2. 
 
 
The cumulative distribution of back transformed simulated values to original units, showed 
a very good reproduction of the data, under both schemes. The target mean and variance 
are well reproduced for both cosimulation and independent simulations, even though the 
variance shows a greater mismatch with the conditioning data in the case where 
cosimulation was used. 
 
 
Comparison at the boundary 
 
In order to compare the performance of the two methods, we need to focus on the results 
near the boundary where we can expect to have greater differences. 
 
One comparison was done using the expected value (E-type value, Deutsch and Journel, 
1998) in original units at each location and compare it with the ‘true’ value in the reference 
map. The expected value is obtained by averaging the simulated value of all realizations at 
each location. Comparing blocks within a given distance from the boundary, both 



simulation schemes give similar results, but the block values obtained from cosimulation 
show higher correlation coefficients with the true values. As expected, the difference 
between the two methods becomes smaller beyond the range of correlation of the cross 
variogram (Fig. 7). 
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Fig. 7: Correlation coefficient between E-type estimates of cosimulated and independently 
simulated models, and the “true” values considering blocks within a given distance from the 
boundary between Z1 and Z2. The higher correlation coefficient with the true values shown by the 
blocks estimates from cosimulation indicate this model represent better the underlying correlation 
that exists between Z1 and Z2. 
 
 
The other comparison that was done considered the global variance of each realization 
calculated from blocks within a given distance from the boundary between Z1 and Z2. As 
expected, the average of the global variance over all the realizations showed lower 
variance for the block values obtained using cosimulation instead of independent 
simulations (Fig. 8), and is closer to the global variance calculated from the same group of 
blocks in the ‘true’ reference map. 
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Fig. 8: Average global variance calculated from blocks within a given distance from the boundary 
between Z1 and Z2. The average variance calculated from blocks estimated using cosimulation is 
closer to the global variance from the reference value. 
 
 



Conclusions 
 
A significant step in mineral resource and ore reserve estimation is the choice of the 
geological domains as well as the type of boundaries between them. Geology should be 
used to define these domains. The geological mechanism to which the geological controls 
are due, are in most cases transitional in nature. This yields contacts between boundaries 
that are diffuse or gradational, and we should expect some degree of overlap between the 
estimation domains.  
 
The estimation of a domain with a ‘soft’ boundary with any of its neighbors implies that 
samples from either side of the boundary should be used in the estimation. Nevertheless 
the samples outside from the domain should not be considered to follow the same 
distribution and spatial model as the samples inside, as they belong to distinct domains 
defined by different statistical parameters. 
 
A linear model of coregionalization can be used to capture the spatial correlation of one 
variable across a boundary between domains. This spatial model is legitimate and allows 
for correct reproduction of representative statistics and the covariance model at locations 
near the boundary, where samples from both domains are used for the estimation of 
unknown locations.  
 
The calculated LMC spatial model can be used in a full LMC cokriging or cosimulation to 
model a geological boundary using samples from adjacent boundaries. This alternative for 
the estimation of domains with ‘soft’ boundaries, as shown in the application, has the 
advantage of improved resource estimation by reducing the global uncertainty in 
transitional zones near the boundaries. It also shows a decrease of smoothing in the 
estimates if kriging is the tool to obtain the resources, and also the reproduction of data 
correlation across a boundary in the estimates, which can help for improved delineation of 
the mine plan. 
 
The drawbacks of this methodology are the uncertainty associated with the determination 
of the nugget effect of the cross variogram, which will depend strongly on the number of 
data (grid spacing) available to characterize the contacts, and the shape of the contact 
surfaces relative to the spatial anisotropies of each domain. This uncertainty can have a 
big influence in the overall uncertainty of the final model.  The extra time associated with 
fitting a linear model of coregionalization can be easily overcome by using semi-automatic 
fitting programs. 
 
This methodology, assumes that the variable is stationary in each domain, and therefore 
can be used to model a global spatial relationship across a boundary. However, nature 
provides us with several examples, where the behavior of our variable of interest is no 
longer stationary as it gets closer to the boundary, such as an increase or decrease in the 
mean or variance near the boundary between two different geological domains. In this 
case we need to identify the non-stationary factors that affect the behavior of the variables 
near the boundaries, in the mean, variance and spatial covariance model in order to 
estimate or simulated using non-stationary kriging. A more detailed description of this new 
technique can be found in Larrondo and Deutsch (2004). 
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