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Abstract 
Geostatistical realizations are often built at an arbitrary scale 
based on available data and computational resources.  In 
certain settings, it may be necessary to downscale the 
realizations for flow simulation and local resource assessment.  
This is especially important in the Athabasca Oilsands where 
accurate flow simulation often requires numerical models with 
a very fine grid size.  Flow simulation is undertaken for 
selected areas and realizations.  It is intractable to construct 
the original geostatistical models at the fine scale.  It is 
desirable to construct finer scale models that reproduce the 
original realizations exactly.   

Approximate downscaling is always possible with 
geostatistical methods; however, it is of interest to create fine 
scale models that exactly reproduce the large scale models to 
ensure consistency and avoid potential biases.  Direct block 
sequential simulation is developed to generate fine scale 
realizations that exactly reproduce block data. 

A comprehensive case study is shown from the Athabasca 
Oilsands. Geostatistical realizations are constructed over 100s 
of square kilometers at a large scale. These realizations are 
locally downscaled to 20m by 2m by 2m for flow simulation 
around particular SAGD well pairs. The fine scale realizations 
are constructed such that they exactly match the initial coarse 
scale realizations. An approximate downscaling method is also 
used. The 3-D models and flow simulation results were 
compared to show the difference made by the exact 
downscaling method. 
 
Introduction 
One major task of geostatistical modeling is to build reservoir 
models of petrophysic prosperities for reservoir simulation. 

When the target is a whole reservoir, upscaling of 
geostatistical reservoir models is always required because 
geostatistical models have a much finer scale than the 
reservoir simulation models. When the target is a small area, 
downscaling of geostatistical models may be required. In the 
Athabasca Oilsands, where the SAGD technique is commonly 
used for oilsands recovery, the flow simulation of horizontal 
well pairs or SAGD Pad is very important. The detailed flow 
simulation of selected small areas requires the input models at 
a very fine grid size. Normally, geostatistical models have 
been built at a large scale over lease area or any large area. 
The input model can be generated by either downscaling the 
large scale model or rebuild a fine scale model for the selected 
small area. Rebuilding a small area model usually requires a 
different technique, which introduces an inconsistency 
between the large- and small-scale models.  It is desireable to 
avoid inconsistencies and the requirement to defend and 
compare different models of the same volume.  Downscaling 
techniques are needed to keep the consistency between the 
models at different scales. 

In building geostatistical reservoir models, multiscale data 
are often available for modeling.  Large trend information, 
seismic, well testing and production data have a much larger 
scale than the core and well log data.  Some geostatistical 
techniques are integrating those large block data in generating 
fine scale models.  These techniques include co-kriging, 
collocated co-kriging, and trend modeling technique using the 
block data as locally varying mean.  Althrough these methods 
constrain the fine scale model with the block data, these 
methods are only approximate downscaling methods that can 
only provide fine scale model results approximately match the 
block data.  To avoid any biases in the downscaling, and to be 
consistent in the models at different scales, an exact 
downscaling technique is desired so that the block data can be 
exactly reproduced when upscaling the fine scale model back 
to the original scale. 

One historical approach to ensure consistency between an 
original large-scale model and a downscaled model is a simple 
duplication method.  This method duplicates the block datum 
to each small cell in the large-scale block; however, in this 
method, the heterogeneity at the fine scale is not preserved or 
modeled correctly.  This paper proposes an exact downscaling 
method that generates small scale heterogeneous models with 
the right properties while simultaneously exactly reproducing 
the block data and fine scale data. This method is developed 
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using the Direct Sequential Simulation (DSS) technique with 
block kriging. 

To generate the heterogeneity at fine scale, the statistical 
properties at the fine scale are needed for the downscaling.  
Covariance or variogram functions of the point scale data are 
required.  The fine scale data or point data are also used for 
conditioning the fine scale model.  Thus, this downscaling 
technique is actually a multiscale modeling process. Different 
volume supports are accounted for in the block kriging. The 
large scale data and fine scale data are assumed to be 
representative to the volumes they are supporting.  The scale 
relationship of data has to be linear and the scale relationship 
of heterogeneity is accounted in the volume covariance 
relationship.  

The background and theory of the downscaling method is 
presented next, and the exact reproduction of the block data is 
proved. Then, the application of the downscaling method will 
be demonstrated with a case study. 
 
Background  
Consider a block with an arbitrary shape. 
The block is composed of n small grid cells. 
If there are values or point data in all of 
small cells, the block value can be 
calculated from the point data by this 
equation: 

 1( ) ( ' ) 'VZ Z d
V

= ∫u u u  (1) 

where ( ' )Z u is the point data, and ( )VZ u is 
the block datum. 

If the sizes of the n small cells are equal, the equation 
becomes a simple linear equation: 

 
1

1( ) ( )
n

V i
i

Z Z
n =

= ∑u u     (2)  

where ( )iZ u  (i = 1, 2, …n) is the point data, and ( )VZ u is the 
block datum.  

This equation shows a linear relationship between the 
block datum and the point data.  Some petrophysical 
properties, such as porosity and water saturation have a linear 
relationship since they are concentrations or proportions.  
Recall that the porosity is the fraction of pore volume p VV over 

the bulk volume of the rock b VV . Discretizing the bulk volume 
into n equal sized small bulk volumes b vV , the following 
equation (3) shows that the block porosity value ( )Vφ u  is exact 
the average of the point porosities ( )iφ u : 
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It is same for water saturation.  The block averaging is an 
exact upscaling method.  Of course, the size of the small cells 
must be accounted for.  This method enables the checking of 
the exact downscaling method.  Permeability does not have 
the linear relationship between the data at different scales; 
however, a power law transformation could be used to make 
the arithmetic averaging applicable to permeability1.  

The downscaling process is not as straight forward as the 
upscaling process.  To generate a fine scale model using the 
block data, the heterogeneity at fine scale must be taken into 
account.  Although the data have a linear relationship between 
different scales, the heterogeneity is non-unique, that is, there 
are multiple possible heterogeneity models that reproduce the 
same block data.  The information on the heterogeneity at fine 
scale has to be input into the downscaling process.  In 
geostatistical modeling, the way to handle heterogeneity is 
through a reguionalized variable parameterized by the 
variogram or covariance.  The block kriging system is used to 
allow the influences of data and different volume support 
being accounted in the simulated values.  The well data are 
necessary to condition the fine scale model.  Thus, both block 
and point data are integrated in the downscaling technique.  
The kriging system for the downscaling method is given 
below in matrix form:  

•C λ = D   
or 
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where C is the matrix of covariance of multiscale data, Cbb is 
covariance between block data. Cbp or Cbs are covariances 
between block data and point data or previously simulated 
data. Cpp, Cps and Css are covariances between point data and 
previously simulated data. λ is the column matrix of weights. 
λ is the weight of block data. μ is the weight of point data and 
w is the weight of the previously simulated data. D is the 
column matrix of covariance of data and simulated node. 

The point scale covariance model can be generated from 
well data.  The complicated non-linear relationship in 
heterogeneity at different scales can be simply accounted in 
the relationships between the block covariance or block-point 
covariance and the point covariance: 

2
1( ) ( ) ' "b b p pC C d d

V
= ∫∫h h u u   (4) 

1( ) ( ) 'b p p pC C d
V

= ∫h h u    (5) 

where the V is the volume of the block. 
With block data, well data and covariance models, a 

multiscale direct block sequential simulation framework can 
be used for downscaling.  
 
Theory 
Consider a random function Z(u) distributed over a field D: 
{ }( ) ,Z D∀ ∈i iu u  

Assume a second-order stationary for both point data and 
block data over the field D, so m, σ and C(h) are constant over 
D. Given n block data and m point data, each small cell can be 
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simulated using the multiscale direct block sequential 
simulation technique: 
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(6) 
where ( )s iZ u  is the simulated value at the fine grid cell ui, 
and ( )jZ u  is the point data, ( )s lZ u  is the previously 
simulated data, and R(ui) is the random residual at the location 
ui. 

According to the characteristics of direct sequential 
simulation techniques, the downscaling will generate a fine 
scale model that follows the correct spatial correlation and 
hornors the point data.  The most interesting thing is the fine 
scale model can exactly reproduce the block data, that is, the 
block average of the simulated values is exact the block datum 
used in the downscaling: 

1

1( ) ( ) ( )
n

V s s V
i

Z Z Z
n =

= =∑ iu u u    (7) 

The exact reproduction of the block data in the method is 
analytically demonstrated and proved in the Appendix.  The 
exact reproduction of the block data enables the consistency 
between the fine scale model and the original model and 
ensures that no bias is introduced by the scaling process. 
Therefore, this method is also named the Exact Downscaling 
with Multiscale Direct Sequential Simulation (EDMDSS).  
 
Case study on downscaling large 2-D models for 
flow simulation 
A synthetic dataset was created basing on some 2-D large 
scale models generated from the Athabasca Oilsands.  The 
geostatistical 2-D realizations were constructed over 100s of 
square kilometers at an areal resolution of 100m square.  After 
selecting the locations of SAGD well pairs, a small area 
(800m by 200m) around a particular SAGD well pair was 
extracted from 2-D models and downscaled areally to 20m by 
2m.  Then, the EDMDSS and an approximate downscaling 
method were used to extend the 2-D model to 3-D models for 
flow simulation around the pair of horizontal wells.  The 3-D 
models and flow simulation results were compared.  

The 2-D porosity data used as block data are shown in a 
map and a histogram in Figure 1.  The location map of 8 wells 
in the study area and the histogram of well data are also shown 
in Figure 1.  The EDMDSS was used to downscale the block 
data to a vertaical resolution of 2m from a total thickness of 
100 m.  The results are shown in Figure 2.  The first row is the 
plane views of the 3-D model at slices of 20 and 40.  The 
remaining images show different slices of the 3-D model in y-
z cross section and x-z cross section.  The heterogeneity at 
fine scale is clearly presented in the cross sections.  The 3-D 
model was converted back to 2-D using the arithmetic 
averaging of each column.  The results are plotted and shown 
together with the original 2-D porosity map in Figure 3.  They 
are identical. 

An approximate downscaling method was used to generate 
a 3-D model from the 2-D block data.  The sequential 
Gaussian simulation was performed using the well data, and 
the block data were input in the simulation as the locally 
verying mean2.  The results are shown in Figure 4.  The 
arithmetic averaging of each column was also applied to the 3-
D model.  The cross plots of block averages versus block data 
for the approximate downscaling method and exact 
downscaling method are shown in Figure 5.  The fine scale 3-
D model generated with the approximate downscaling method 
is inconsistent with the initial coarse scale model; however, 
the model from the exact downscaling method matches it 
exactly.  A few points off the 45o line are caused by numerical 
instabilities in the matrix solutions. 

Flow simulations of a SAGD well pair using the 3-D 
models were conducted.  The results are shown in Figures 6 
and 7.  There is a large difference between the results using 
the two downscaling methods.  The steam chambers 
developed after 5 years of steam injection indicate a better 
shape for the exact downscaled model than the approximate 
downscaled model.  This will not always be the case of course, 
but this show the sensitivity of the results to the downscaling 
methodology.  The cumulative oil production curves show a 
higher oil production for the exact downscaled model.  The 
SOR curves indicate a better SOR for the exact downscaled 
model.  

It is clear that using different downscaling methods for 
generating fine scale models has a large impact on the flow 
simulation results.  Using a fine scale model that is consistent 
with the initial coarse model is a better choice. 

 
Conclusions 
The DSS based downscaling technique can exactly reproduce 
block data.  Models at different scales can be completely 
consistent.  Flow simulation results show that the downscaling 
methodology matters. 

 
Reference 
1. Zanon, S., Nguyen, H. and Deutsch, C.V. 2002, power law 

averaging revisited, CCG report four, 2001/2002. 
2. Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical 

Software Library and User’s Guide, 2nd Edition, Oxford 
University Press. 

 
Appendix 
 
Analytical demonstration of exact reproduction of block 
data in EDMDSS 
We do not show a formal proof – merely some demonstrations 
to illustrate the principles.  The demonstration starts with 
EDMDSS in a block containing two constituting points.  Then, 
the block plus an additional point is considered to show if the 
additional data affect the results.  Thirdly, EDMDSS in a 
block with three constituting points is shown.  To simplify the 
equations let’s assume the mean is zero. 

 
One block containing two constituent points: 
At the first location u1: the simulated value:  

1( ) ( )s VZ Z Rλ= +1 1u u      (A-1)  
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where R(u1) is a random residual drawn by Monte Carlo 
Simulation.  

At the next location u2: the kriging estimate and equations:  
2( ) ( ) ( )s V sZ Z w Z Rλ= + +2 1 2u u u    (A-2) 

2 1 2

2 1 1 1 2 1

b b b b

b

C w C C
C w C C

λ
λ

+ =⎧
⎨ + =⎩

    (A-3) 

From equations (5) and (6): 
2

1 2
1 2 2b b b b

CC C C σ +
= = =    (A-4) 

the equation (A-3) becomes: 
2

2
2 1 2 1 1 2 1

1

( ) 2 2

w

C w C C

λ

λ σ

+ =⎧⎪
⎨

+ + =⎪⎩
  (A-5) 

The equation (A-5) can be solved to get: 2 2
1w

λ =⎧
⎨ = −⎩

 

The kriging variance is: 
2

2 2 1 2
2 2 2 2 2 1 1 2

( )
( ) 2 0

2k b
C

C C w C C
σ

σ λ σ
+

= − − = − + =2u  

Then, the random residual 2( ) 0R ≡u because it follows a 
distribution with zero mean and zero variance. 
The simulated value: 

2( ) ( ) 2 ( )s V s V sZ Z w Z Z Zλ= + = −2 1 1u u u   (A-6) 
Then, the block average of simulated values is: 

( ) ( ) ( ) 2 ( )
2 2

s s s V s
V s V

Z Z Z Z ZZ Z+ + −
= = =1 2 1 1u u u u (A-7) 

The block datum is reproduced exactly for a block contains 
two points. 

 
One block containing two constituent points plus an 

extra point: 
At the first location u1: the simulated value: 

1 1( ) ( ) ( )s VZ Z Z Rλ μ= + +1 3 1u u u    (A-9) 
where R(u1) is a random residual drawn by Mont Coral 
Simulation. 

At the next location u2: the simple kriging estimate: 
2 2 1( ) ( ) ( ) ( )s V sZ Z Z w Z Rλ μ= + + +2 3 1 2u u u u  (A-10) 

And the system of equations: 
2 1 1 2 3 2
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2 3 1 3 1 2 3 3 2 3
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(A-11b)
(A-11c)

 

from (A-11a) with equation (A-4): 
2 1 1 2 3 3

2 1 21b b b b

b b b b

C w C C Cw
C C

μλ μ− −
= = − −   (A-12) 

(A-11a) - (A-11b):  
2

1 1 2 3 1 3 2 2 1( ) ( )b b bw C C C C Cσ μ− + − = −   (A-13) 
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2
2 1 1

2
3 1 3

2 2
1 2 1 2 1

3 2 1 3
2

1 2 1

3 2 1 3

( ) ( )

( ) ( )

( ) (1 )

b b b b

b

C C C w
C C

C C w
C C

C w
C C

σμ

σ σ

σ

− − −
=

−

− − −
=

−

− +
=

−

   (A-15) 

Insert (A-12) into (A-11c): 
23

3 1 2 1 1 3 2 2 3(1 )b
b

b b

CC w w C C
C

μ μ σ− − + + =  

rearrange it: 
2

2 3
3 1 3 2 1 3 1 3 2 2( ) ( ) ( ) 0b

b b

CC C w C C
C

μ σ− + − + − =   (A-16) 

Insert (A-14) into (A-16): 
2

23 1 3 2 3
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2 2 2
3 1 3 2 3

2 22
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−
  (A-17) 

this equation gives μ2 = 0. 
Then, from (A-14), w1 = -1. 
And from (A-12), λ2 = 2. 

Therefore, the solution of the kriging system is:
2

1

2

2
1

0
w
λ

μ

=⎧
⎪ = −⎨
⎪ =⎩

 

the simple kriging variance is: 
2

2 2 2 2 1 2 1 2 2 3
2 2 2

2 2 1 2 1 2 1

( )

2 ( ) 0
k b

b

C C w C C

C C C C

σ λ μ

σ σ σ

= − − −

= − + = − + + =
2u  

then, the random residual 2( ) 0R ≡u because it follows a 
distribution with zero mean and zero variance. 
The simulated value: 

2 1 2( ) ( ) ( ) 2 ( )s V s V sZ Z w Z Z Z Zλ μ= + + = −2 1 3 1u u u u  (A-19) 
Therefore, the block average of simulated values is 

( ) ( ) ( ) 2 ( )
2 2

s s s V s
V s V

Z Z Z Z ZZ Z+ + −
= = =1 2 1 1u u u u (A-20) 

The block datum is exactly reproduced and the extra datum 
does not affect the exact reproduction of block data.  

 
One block containing three constituent points 
At the first location u1: the simulated value:  

1( ) ( )s VZ Z Rλ= +1 1u u     (A-22) 
At next location u2: the simulated value:  

2 2 1 2( ) ( ) ( )s V sZ Z w Z Rλ= + +1u u u    (A-24) 
At the last location u3: the simulated value:  
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3 3 2 3 2 3( ) ( ) ( ) ( )s V s sZ Z w Z w Z Rλ= + + +1u u u u  (A-25) 
and the kriging system: 

3 2 1 3 2 3

3 1 2 1 1 3 1 2 1 3

3 2 2 2 1 3 2 2 2 3
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(A-26a)
(A-26b)
(A-26c)

 

From equations (5) and (4): 
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3
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(A-26b) - (A-26c):  
2 2

3 1 3 2 3 2 1 2 3 1 2 3 1 3 2( ) (3 3 ) (3 3 ) 3 3C C w C w C C Cλ σ σ− + − + − = −  
rearrange it: 

2
3 1 3 2 3 2 3 1 2( 3) ( ) ( ) (3 3 ) 0C C w w Cλ σ− − + − − =  (A-28) 

from the equation, we can get λ3 = 3 and w2 = w3. 
Then from (A-26b) or (A-26c), we can get w2 = w3 = -1. 

Therefore, the solution of the kriging system is:
3

2

3

2
1
1

w
w

λ =⎧
⎪ = −⎨
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and the simple kriging variance is: 
2
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then, the random residual ( ) 0R ≡3u  because it follows a 
distribution with zero mean and zero variance. 
The simulated value: 

3 3 2 3 2 2( ) ( ) ( ) 3 ( ) ( )s V s s V s sZ Z w Z w Z Z Z Zλ= + + = − −1 1u u u u u
Therefore, the block average of simulated values is  
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The block data is reproduced exactly in a block containing 
three points. 

It has been shown that the block data can be reproduced 
exactly with downscaling a block for n=2, n=2 with an extra 
point and n=3.  Basing on the results, it may be inferred that 
simulating all locations of a block by DSS can always exactly 
reproduce block data.  It is proved below. 
 
Proof of exact reproduction of block data in EDMDSS 
It has been shown in the domonstraction that the last location 
in a block is very important for the exact reproduction of the 
block data. Soppose downscaling a block into n small cells, at 
the last location, un: the simulated value:  
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i

Z Z w Zλ
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= + ∑u u    (A-29) 

and the kriging system: 
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from equation (4), 
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so 
1, 1, .. 1i

n
w i n
λ =⎧

⎨ = − = −⎩
 is a solution for (A-30a). 

 
from equation (5), 
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so 
1, 1, .. 1i

n
w i n
λ =⎧

⎨ = − = −⎩
 is also a solution for n-1 

equations (A-30b). 
Since the kriging system is unique and only has a unique 

solution, the founded solution must be the correct unique 
solution.  Then, the simulated value at the last location is 
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The block average of simulated values at all locations in the 
block is 
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Threrfore, the EDMDSS exactly reproduces the block data.
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Figure 1: The block data and well data used for the case study  

 

 
Figure 2: The exact downscaling results in plane view (first row), y-z (left) and x-z (right) cross sections.  
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Figure 3: The map of original porosity block data (left) and the map of porosity averages from the 3D model (right). 

 
 

 
 

Figure 4: The approximate downscaling results in plane view (first row), y-z (left) and x-z (right) cross sections. 
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Figure 5: The cross plots of porosity block data vs. block average of fine scale model for the approximate downscaling method (left) 
and the exact downscaling method (right). 

   
Figure 6: The results of flow simulation using the models generated by the two methods: the left plot is the cumulative oil production 
curves, and the right plot is the steam oil ratio (SOR) curves.  The gray solid line is for the approximate downscaling method, and the 
black dash line is for the exact downscaling method. 
 

                
Figure 7: The steam chambles after 5 years of steam injection.  The model by exact downscaling gives a better developed steam 
chamber.
 


