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Abstract
The predicted flow performance of Steam Assisted Gravity Drainage (SAGD) well pairs is sensitive to the spatial distribution of permeability.  A number of permeability measurements are taken from small scale core plug data.  The data may be taken preferentially from certain geologic locations and there may be inconsistencies in the data.  The measurement scale is significantly less than that required for input to flow simulation.  Mini-models of porosity and permeability are constructed and flow simulated in order to establish representative relationships/correlations at the grid block scale used in SAGD flow simulation.  The mini-models are constructed on a by-facies basis honoring the spatial variability within each category.  The uncorrected mini-model flow results lead to a too-narrow range of permeability.  Geostatistical scaling laws are applied to correct the permeability values.
This paper presents a permeability modeling procedure with application to the Surmont Lease in Northern Alberta, Canada.  The mini-model construction, flow simulation of the mini-models, and derivation of representative porosity-permeability statistics are described and documented in this context.  A comparison of SAGD flow simulation results (recovered bitumen and steam-oil-ratio) with different permeability modeling procedures is presented to support the relative importance of modeling permeability.  The legitimacy of any particular permeability model can only be compared to or validated with comparison to actual flow performance at some time in the future, which is a difficult task. Even with actual flow data, this is a difficult task. This will occur at the Surmont project, at some point in the future.
Introduction

The thermal SAGD process, developed by Dr. Roger Butler in 19781,2 for in-situ heavy oil recovery, is being widely implemented for heavy oil recovery in Northern Alberta when mining is not economically posssible.  Steam is injected in an upper injection well to lower the viscosity of surrounding oil allowing it to drain along a growing cone-shaped steam chamber into a lower production well via gravity.  The acceptance of the SAGD extraction method drives Canada to second (after only Saudi Arabia) on a world list of proven reserves with some 175 billion barrels3.  Approximately 40 major Albertan oilsands projects are underway or planned with an expected yield of 1.8 million barrels per day by 20104.
Reservoir performance is often forecast with flow simulators such as CMG STARS5.  Such simulators model the transfer of heat from steam to the surrounding reservoir.  Thermal simulators of this type can be used to quantify SAGD production performance summarized by cumulative oil production (COP), instantaneous oil rate (IOR), cumulative steam-oil-ratio (CSOR), and cumulative water injection (CWI).

Several reservoir parameters and their associated uncertainties impact the prediction of SAGD production.  Of all such geological, engineering, flow simulation, and economic parameters, the inherently uncertain spatial distribution of petrophysical properties is perhaps the most important6.  The spatial distribution of facies, porosity, water/oil/gas saturation, and permeability have a significant effect on production performance.  Permeability is often the single most important variable due to its relatively high sensitivity to flow responses.  The subject of this paper is focused on constructing robust permeability models for SAGD flow simulation.
Permeability Modeling  

The traditional method for modeling permeability is with linear or quadratic by-facies porosity-permeability transforms using core measurements7.  These correlations are used to transform interpolated log porosity to permeability at the geological model scale.  The permeability is then downscaled for SAGD flow simulation8.  Although this methodology is straightforward, there are some practical challenges and limitations:

1. There may be insufficient core permeability measurements to reliably infer the by-facies porosity-permeability relationships9.  The intrinsic scatter or variability in the data make it difficult to fit with a simple linear or quadratic function. 

2. Core porosity and permeability measurements may be inflated due to dilation of the core during extraction.  This preference to high values can be compounded with preferential sampling of clean sandy intervals10. 
3. The differences in scale from small core samples to the larger geological property modeling grid may be important, but is often ignored for simplicity.

There are several procedures aimed at overcoming the challenges above.  An excellent overview that addresses all three issues is presented and applied by Waite et al. for the Hamaca Field within the Orinoco Heavy Oil Belt of Venezuela11.  This paper provides an alternative method.

The proposed permeability modeling methodology accounts for limited and naturally random permeability data, core expansion and preferential sampling, as well as the scale differences between core, geological grid cell volumes, and flow simulation grid cell volumes.  The procedure is efficient, can be largely automated, and is robust.
The proposed methodology is applied to the Surmont project.  The resulting permeability model is downscaled to the flow simulation grid and flow simulations for a single well pair model are conducted.  The resulting COP, IOR, CSOR, and CWI production performance measures are then compared to the results using a traditional permeability model from simple by-facies quadratic relationships.

The methodology consists of two major steps.  The first step involves debiasing and re-scaling the by-facies core horizontal permeability kH versus porosity  relationships using mini-models.  This step involves seven working phases.  The second step assigns permeability to the geological grid.
Methodology
The two key features of the methodology are (1) the integration of missing lower porosities or increased shaliness into measurements from dilated and preferentially sampled core which is also dilated and (2) the translation of porosity-permeability relationships at the core scale to the SAGD flow simulation scale.  The proposed methodology does not require large core databases to perform effectively.

Representative 1.0 x 1.0 x 0.5m (0.5m3) mini-models (MM) roughly the size of a typical flow simulation grid cell are utilized as miniature numerical laboratories to infer the debiased by-facies kH- relationships at the flow simulation scale.  There are a total of 62,500 cells measuring 0.02m (2cm) on each side for an 8.0cm3 grid cell volume. 

The spatial distributions of shaliness within the mini-models are visually calibrated to core photos showing representative McMurray shale heterogeneity within each facies.  By-facies porosity minimum and maximum limits are derived from logging measurements to transform vhslae into porosity mini-models from which representative kH and kV distributions can be calibrated.  These resulting by-facies permeability distributions are input into a simple steady-state single phase flow simulator to calculate effective horizontal and vertical permeabilities at the subsequent SAGD flow simulation scale.  The process is repeated for each facies to construct a reliable scatter of kH- pairs over the entire range of porosity even with limited core plug data.  The resulting representative kH versus distributions are adjusted using volume variance theory to ensure they will accurately reflect the anticipated permeability uncertainty.

The core porosity values do not change – the well log porosity limits are simply used to extend the bivariate relationship to obtain permeabilities from a wider range of values as if we had sampled and analysed all facies adequately.
Surmont Application
The kH and kV permeabilities are modeled within the blue outlined area in Figure 1. Twenty geostatistical realizations of facies, porosity, and water saturation were previously constructed over a 4 x 8km area (MA2005) with aerial cell sizes of 25 x 25m.
There are 157 wells with log facies and porosity measurements available within the model area in Figure 2.  There are 35 wells with 760 core facies, , kH, and kV measurements available.  Five facies types are considered: (1) sand (SC), (2) breccia (BRC), (3) sandy inclined heterolithic strata (SIHS), (4) muddy inclined heterolithic strata (MIHS), and (5) shale (SH).  Sample counts of 473, 53, 146, 50, and 38 are in SC, BRC, SIHS, MIHS, and SH facies, respectively.

Three sets of permeability related cross plots for all 760 data are shown in Figure 3:  kH (core) vs  (core), kV (core) vs kH (core), and  (log) vs  (core).  The correlations are 0.618, 0.899, and 0.450, respectively.  Figure 4 shows the kH (core) vs  (core) scatters by-facies for BRC, SIHS, and MIHS.  The correlations here are 0.834, 0.654, and 0.507, respectively.  The high core values are apparent in all of the bivariate scatter plots in Figures 3 and 4.  The core  measurements are systematically higher than the log  measurements; and since kH and  are well correlated, kH and kV are also likely too high.  These by-facies biased kH and kV univariate distributions are shown in Figure 5.  Following are more details of each step.
Step One: kH- Correlations 

The bivariate kH vs  relationships are first established using the mini-model approach.  There are seven phases to this first step of the permeability modeling methodology.
Simulate VSHALE 
The volume fraction of shale VSHALE is simulated using sequential Gaussian simulation.  The spatial correlation or variogram is visually calibrated to core photos representative of typical McMurray Formation heterogeneity from the Surmont lease.  The unconditionally simulated Gaussian values are then converted to a lognormal VSHALE distribution with randomly drawn mean between 0 and 100% and standard deviation of 20%.  Figure 6 illustrates the consistency between some typical core photos and the resulting mini-model shale heterogeneity for the BRC, SIHS, and MIHS facies.  

The use of VSHALE could be confusing.  We are not directly using any VSHALE data; VSHALE is a surrogate variable that provides a mechanism to create models with lower porosity than observed in the core data.  This permits us to fill in the entire distribution of fair porosity values.  An area of future work is the quantification of the spatial correlation using the VSHALE data directly.

Convert VSHALE to 
The following relationship is used to convert the VSHALE models to :
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where NET and NON-NET are the maximum and minimum by-facies log porosity values, respectively.  These values are listed by-facies in Table 1.  Formula (1) ensures the fair full range of possible porosity is accounted for.  An important assumption is that the extreme log porosity values are unbiased and reasonably represent porosity in the reservoir.  The missing low porosity reservoir is introduced into the by-facies geological mini-models.

Figures 6 and 7 show the simulated VSHALE and representative  distributions for a typical mini-model run. Notice the presence now of more realistic lower porosity.  The resulting representative distributions of  are used in subsequent phases to create representative kH and kV distributions.

Representative kH- Relationship

This phase merges the kH-correlation from core measurements with the representative porosity distributions calculated in the previous phase to calculate new representative kH- bivariate distributions.  A GSLIB environment program named bimodel is used for this merging and calibration process.  The program quantifies a bivariate distribution at a user-defined discretization in kH and .  The horizontal axis has 45 bins from 0 to 45% and the vertical kH axis has 50 bins from 0.001 to 15,000mD for a total of 2,250 unbiased 2D bivariate discretization points.

A number of options are available for establishing the representative kH vs  distributions.  The raw kH- data can be grouped according to  and non-parametric kH distributions could be fit; however, the resulting distributions were too erratic due to the low number of raw by-facies data and their preferential high porosity and permeability densities.  The experimental bivariate log(kH) vs  scatters are approximately bivariate normal and fully parameterized by the kH and  mean and kH-correlation coefficient.  Under this assumption, the set of kH conditional cumulative distribution functions (ccdfs) can be calculated analytically.
The representative kH vs  bivariate distributions are shown in Figure 8.  The color scale represents the ccdf values from 0 (blue) to 1 (red).  At each of the previously defined 45 representative porosity bins, a cross section through this plot reveals the Gaussian ccdf for horizontal permeability kH.  These representative bivariate kH vs  distributions are used in the next phase to generate representative kH and kV distributions at the mini-model scale.

Representative kH
This stage simulates from the representative kH vs  bivariate distributions generated in the previous phase according to a correlated probability field and the representative porosity distributions constructed in the second phase. This procedure is followed in order to create unbiased kH mini-models for subsequent flow simulation.  A GSLIB environment program named cltrans implements the combined probability field cloud transformation.  The required inputs are correlated probability fields, the representative  distributions calculated in the second phase, and the bivariate kH vs  distributions calculated in the previous phase. 

A correlated probability field is simulated over the mini-model grid cells using sequential Gaussian simulation with a 0% nugget and isotropic 30cm range variogram within each facies.  At each of the 62,500 mini-model cells, a representative porosity value  (from the second phase) and probability value p is then available.  The representative kH value is then simulated as the p-quantile of the appropriate kH ccdf in the previous phase.  Some typical representative kH distributions resulting from this process are shown in Figure 9.  Notice the lower kH frequencies previously unavailable without the mini-model approach.  Details of the probability field cloud transformation are provided later.

Representative kV
The approach for calculating kV at the mini-model and geological scale is through the 760 kV:kH ratio data available from core measurements.  The kV:kH ratio is first simulated within the mini-model grid using a 10% nugget and isotropic 30cm range variogram and the by-facies reference distributions of core-derived kV:kH ratios.  The maximum allowed kV:kH ratio is 1.  At each of the 62,500 mini-model grid cells, the representative kV value is then simply calculated as the kV:kH ratio value multiplied by the corresponding kH value simulated in the previous phase.  Some typical kV:kH ratio models and representative kH distributions resulting from the multiplication are shown in Figure 10.
Representative kH- Scatter

A steady-state single phase flow simulation is implemented to calculate the effective horizontal flow rates and the corresponding effective horizontal permeabilities kH through Darcy’s Law.  The effective porosity  is also calculated with a simple arithmetic average.  Repeating the previous phases up until now a total of 250 times within each facies, representative kH vs  bivariate scatters that account for sampling bias and diverse scales can be constructed. Figure 11 shows the results.  The solid red line represents conditional expectation curves from the third phase – the results are consistent.

Variance Inflation
The effective kH values from the steady state flow simulation average out geological variability too quickly resulting in the narrow kH ccdfs in Figure 11.  This will understate the true uncertainty in kH.  There is a need to inflate the conditional distribution variances for the true permeability heterogeneity to be captured.  A variance inflation factor (VIF) is calculated using geostatistical scaling laws from the mini-model to model area dispersion variances.

The VIF calculation involves several steps. All of the calculations are performed within each facies separately. The results are summarized in Table 2.  The first step is to calibrate the horizontal permeability power law averaging constant  by-facies.  This is done using the 250 representative kH mini-models from the fourth phase and the 250 effective kH values from flow simulation in the previous (sixth) phase.  The  constant is iterated on until the power averaging process of the kH mini-model converges on the corresponding flow simulated effective kH value.  The average power over all 250 runs is listed in Table 2.  All of the subsequent dispersion variance calculations and manipulations are performed in power law space using the kH data.
The maximum dispersion variance D2(CORE,MA2005) is required within each facies.  This variance is calculated as the average variance taken over eight equally wide 5% porosity conditioning windows from 0 to 40%.  These are listed in Table 2. The target variability at the geological modeling scale D2(V,MA2005) is then calculated as a portion of this maximum dispersion variance according to the following volume variance relationship by-facies:
                      
[image: image3.wmf](

)

22

(V,MA2005)(CORE,MA2005)(V,V)

1

=-

DD

g

                (2)

The gamma-bar value is the last link to the target variability and VIF.  This is calculated within each facies using the same porosity variograms as those used for the 3D geostatistical porosity modeling work.  The resulting D2(V,MA2005) values are listed in Table 2.  The VIF is then simply the ratio between the target variability D2(V,MA2005) and the average variability currently captured in the mini-models D2(MM,MA2005):
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The D2(MM,MA2005) dispersion variance is calculated similarly to D2(CORE,MA2005).  The representative bivariate kH vs  distributions from the previous phase are separated according to eight equally wide 5% porosity conditioning windows from 0 to 40%.  The variance of kH within each window is calculated and averaged to obtain the final D2(MM,MA2005) values listed in Table 2 with the VIF values.

The VIF factors are applied to the kH ccdfs of each porosity bin (see the third phase) within each of the five facies types.  This correction is applied using an affine correction.  The resulting variance corrected kH vs  bivariate distributions are shown in Figure 12.  The red bullets represent the variance corrected kH-scatter of pairs.  The original biased distributions in Figure 4 are shown with lightly shaded bullets.  A global quadratic by-facies porosity-permeability regression relationship is shown with a solid blue line for reference. 

The corrected kH vs  bivariate distributions (red) in Figure 12 provide the key link for subsequent permeability modeling at the geological scale and SAGD flow simulation modeling at the mini-model scale.  These by-facies bivariate relationships effectively and efficiently account for core expansion and preferential core sampling as well as the difference in scale between core measurements, geological model grid cells, and flow simulation grid cells.
Step Two: Permeability Transform
The last step of the permeability modeling methodology is a combined probability field cloud transformation.  This step is performed at the geological modeling scale using the mini-model flow simulation scale calibrations in Figure 12.  This step is relatively straightforward.  The procedure is similar to that used in the fourth phase of the first step.  The kH variable is simulated from the representative kH vs  bivariate distributions in Figure 12 according to a correlated probability field and the previously constructed porosity distributions at the geological modeling scale.  The kH realizations are spatially drawn from the kH ccdfs from the representative kH vs  bivariate distributions in Figure 12 corresponding to previously modeled collocated porosity values. 

Using the representative kH vs  bivariate by-facies distributions in Figure 12 for the cloud transformation ensures the resulting permeability models fairly represent lower permeabilities and increased shaliness that would have otherwise been ignored using core measurements alone.  These relationships also are applicable at the flow simulation scale, and reproduce the correct permeability dispersion variance.
The realizations are drawn according to a spatially correlated probability field in order to accurately represent the spatial variability of permeability as quantified by the variogram.  Randomly drawing from the ccdfs does not guarantee realistic permeability heterogeneity.  Correlated probability fields are simulated using sequential Gaussian simulation.  A vertical-to-horizontal anisotropy ratio was used to model the horizontal SIHS and MIHS variograms due to the sparse core data.

At each of the 15,360,000 25 x 25 x 0.5m geological grid cells, representative porosity values  from the previously available 3D modeling are available along with the probability field.  The kH value is taken as the p-quantile from the ccdf that corresponds to the  value at each grid cell location.  This is repeated for 20 realizations.

The kV variable is modeled by simulating the kV:kH ratio and multiplying by kH.  A variography study of the kV:kH ratio indicates an almost pure nugget effect model.  The kV value is obtained from multiplying kV:kH by kH.
Figures 13, 14, and 15 show several cross sections through the first porosity, kH, and kV realization.  The same cross section locations are used in each figure.  The horizontal and vertical permeability is set to 0.001mD within shale facies.  Notice the significant control that the porosity model in Figure 13 and by-facies kH vs  bivariate correlations in Figure 12 has on permeability in Figures 14 and 15.  Also notice the increased spatial variability in permeability relative to porosity.  This variability could have been too large had a random cloud transform with no probability field been applied. On the contrary, the permeability variability may have been too low had the VIF not been applied.

SAGD Flow Sensitivity
A small sensitivity study illustrates the importance of the permeability methodology.  CMG STARS is used for the flow simulations.  A network of 20 x 2 x 2m sized Cartesian flow simulation blocks are used within a 1000 x 200 x 100m southwest subset of the model area in Figure 2 for a total of 40 x 100 x 50 (200,000) blocks in the X, Y, Z directions, respectively.  There is a single injector-producer well pair 500m in length located approximately 6m from the bottom of the reservoir.  The project duration is 114 months (9.5 years) with 6 months initial hot finger circulation.  The component, rock-fluid properties, and initial conditions are standard for the McMurray Formation.

Some preliminary steps are performed within the drainage volume before implementing SAGD flow simulation.  The first step is extracting the closest facies, , SW, kH, kV, and kV:kH variables from the geological grid to each of the 200,000 flow simulation grid cells.  The extracted geology is then used to downscale to a fine scale 1.0 x 1.0 x 0.5m grid network.  A re-simulation procedure (sequential indicator simulation for facies and sequential Gaussian simulation for , SW, kH, kV, and kV:kH) conditioned by the extracted geology and variography is used for the downscaling.  It is the geology at this fine scale that is used for flow simulation.

Four different flow simulation runs are relevant to our discussion (1) using the kH and kV models generated by the proposed permeability mini-model approach as input, (2) using the simple quadratic by-facies relationships in Figure 12 (blue) as input (3) using constant homogeneous kH and kV within each facies, and (4) using, in addition to constant kH and kV distributions, constant  and SW.  All the geological variables for extraction and downscaling are derived from the first geostatistical realization.  Other sensitivity runs were performed dealing with different downscaling and upscaling methodologies; however, it is the sensitivity of the flow simulation results to only the permeability modeling methodology that is attempting to be captured in this work. 

The 100oC iso-surface for the recommended mini-model permeability modeling methodology is shown during the hot finger circulation startup (June 2005), the high pressure phase (June 2007), the low pressure phase (June 2010) and the blowdown phase (June 2013) in Figure 16.  The porosity model is superimposed. Notice the rising roughly cone-shaped steam chamber growth with time and increasing porosity. Figure 17 shows the output COP, IOR, CSOR, and CWI results using the recommended approach (solid black lines), the quadratic approach (broken red lines), the homogenous kH and kV approach (broken yellow lines) and homogenous kH, kV, , and SW (broken blue lines). The different permeability modeling approaches certainly produce different flow results. 

It is difficult to determine the best permeability methodology without comparing its flow simulation results to actual flow history. We conclude for now that the permeability modeling methodology is important. This observation is made on the basis of the large sensitivity of COP, IOR, CSOR, and CWI to different permeability models constructed with different methodologies. A comparative study with SAGD flow history would allow for a more objective evaluation of the proposed permeability modeling approach.
Conclusions
There are three main challenges associated with permeability modeling: (1) limited core permeability measurements random porosity-permeability scatters, (2) core expansion and preferential core sampling bias, and (3) vastly different scales between core plug samples, geological grid cells, and flow simulation grid cells.

The proposed mini-modeling approach overcomes these challenges within a relatively straightforward mini-model and flow simulation framework.  The difference between more traditional and the proposed permeability modeling methodology in terms of SAGD flow simulation results is significant.
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Figure 1 – An illustration of the domain and well locations for geological modeling.
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Figure 4: The biased by-facies histograms of kH and kV using the 760 collocated core data.
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Figure 5: Comparison of core photos to the visually calibrated mini-model shale heterogeneity.

	Representative Log Porosity Limits

	
	SC
	BRC
	SIHS
	MIHS
	SH

	NET
	0.00
	0.06
	0.02
	0.00
	0.00

	NET
	0.40
	0.37
	0.39
	0.35
	0.36



Table 1: The fair porosity limits taken from the extreme log porosity values.
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Figure 6: The VSHALE and corrected  distributions for a typical mini-model run.
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Figure 7: The spatial distribution of a corrected  distribution for a typical mini-model run.
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Figure 8: The representative bivariate kH vs  distributions over all scales.
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Figure 9: The representative univariate kH distributions at the mini-model scale.
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Figure 10: Some typical kV:kH ratio distributions and corresponding kV distributions after multiplication.
[image: image19.jpg]100000_

10000.]

1000

HORIZONTAL PERMEABILITY
i

0.01]

0.001]

0.0001

SAND

BIASED
037

correlation

i T T T
01 02 03 04
POROSITY
100000 S-IHS
10000
o BIASED
PHI mean
: 1000} mean
E correlation
o 100 UNBIASED
u PHI mean =0.20
& 10 kH mean
E correlation
j( 1]
g
8 01
&
g 0.01.3
0.001_]
0.0001 - - - -
01 02 03 04
POROSITY
100000 SHALE
10000 ]
BIASED
PHI mean = 0.30
z 10004 KkH 044
E correlation = 0.63
o 100 UNBIASED
u PHI mean =0.19
z 10 kH mean = 141
I correlation = 0.63
2 1
2 1]
=
g
8 01
4
g 0.01.4
0.001_
0.0001

POROSITY

100000, BRECCIA
10000}
BIASED
i PHI mean = 0.34
z 10 H mean - 4626
E correlation = 0.83
o 100 UNBIASED
g PHI mean =0.20
z 1] H mean = 5340
& correlation = 0.56
2 1
2 1]
H
8 01]
&
g 001}
0.001_}
0.0001 - - - -
01 02 03 04
POROSITY
100000_ M-IHS
10000}
BIASED
i PHI mean = 0.34
z 10 H mean = 2002
E correlation = 0.50
o 100 NBIASED
g PHI mean =0.19
z 1] mean = 377
& correlation = 0.51
2 14 ®
£
8 01]
&
g 001}
0.001_]
0.0001 - - - -
01 02 03 04

POROSITY




Figure 11: The representative bivariate kH vs  distributions for the flow simulation scale.
	Variance Inflation Factor Calculation

	
	
	D2(CORE-MA2005)
	~ D2(MM-MA2005)
	(v,v)
	D2(V-MA2005)
	VIF

	SC
	0.06
	0.799623
	0.095044
	0.334
	0.533
	5.603

	BRC
	0.00
	0.357999
	0.059804
	0.429
	0.204
	3.418

	SIHS
	0.00
	0.453394
	0.152053
	0.416
	0.265
	1.741

	MIHS
	-0.26
	0.711314
	0.243210
	0.356
	0.458
	1.884

	SH
	-0.47
	0.433481
	0.262206
	0.200
	0.347
	1.323

	V = 25 x 25 x 1m ---------------------------- Easting, Northing, Elevation
MM = 1 x 1 x 0.5m ------------------------- Easting, Northing, Elevation
MA2005 = 4000 x 8000 x 320m ---------- Easting, Northing, Elevation
CORE = 0.10 x 0.10m --------------------- Circumference, Height


Table 2: A summary of all the required prior quantities for the calculation of the VIF by-facies.
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Figure 12: The by-facies representative variance corrected kH vs   calibrations (red). The biased core data (shaded) and a quadratic permeability curve (blue) are also shown for reference.
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Figure 13: Cross sections through the first porosity realization.
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Figure 14: Cross sections through the first horizontal permeability realization.
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Figure 15: Cross sections through the first vertical permeability realization.


Figure 16: The steam chamber during the startup (top left), high pressure (top right), low pressure (bottom left), and blowdown (bottom right) phases of operation. The porosity model is transparently superimposed.

Figure 17: The COP, IOR, CSOR, and CWI SAGD production performance profiles for the permeability methodology sensitivity studies.
Figure 2 – Scatter of kH-(core), kV-kH, and (log)-(core) using all 760 core data.








Figure 3 – Scatter of kH-(core) within the BRC, SIHS, and MIHS facies.
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